LOUISIANA DEPARTMENT OF WILDLIFE & FISHERIES

OFFICE OF FISHERIES
INLAND FISHERIES SECTION

PART VI -A

WATERBODY MANAGEMENT PLAN SERIES

BLIND RIVER

HISTORY & MANAGEMENT ISSUES
CHRONOLOGY

December 2012 - Prepared by
Rachel Walley, Biologist Manager, District 7

June 2015 – Updated by
Rachel Walley, Biologist Manager, District 7

July 2018 – Updated by
Brian Heimann, Biologist Manager, District 7

The remainder of this page intentionally left blank.
Table of Contents

HISTORY ... 4

GENERAL INFORMATION .. 4
 Description ... 4
 River stage ... 4
 Parishes located .. 4
 Border waters .. 4

ACCESS ... 4
 Boat docks ... 4
 Piers .. 5
 State/Federal facilities .. 5

PHYSICAL DESCRIPTION .. 5
 Shoreline length .. 5
 Timber type .. 5
 Average depth .. 5
 Water fluctuation ... 5
 Shoreline development ... 5

EVENTS / PROBLEMS ... 5

MANAGEMENT ISSUES .. 6

AQUATIC VEGETATION ... 6
 Nuisance species .. 6
 Control Measures ... 6

HISTORY OF REGULATIONS ... 8
 Standardized Regulations ... 8

FISH KILLS / DISEASE HISTORY .. 9

CONTAMINANTS / POLLUTION .. 9
 Water quality ... 9
 Fish consumption advisory .. 9

BIOLOGICAL ... 10
 Stocking History ... 10
 Largemouth bass genetics .. 11
 Species profile .. 12
 Threatened/endangered/exotic species ... 15

ANGLER SURVEYS .. 15

WATER USE ... 15
 Hunting ... 15
 Skiing ... 15
 Scuba Diving ... 15
 Swimming ... 16
 Irrigation ... 16
 Fishing .. 16
 Boating ... 16

APPENDIX I – MAP AND PARISHES .. 17

APPENDIX II – MAP AND LANDING ... 18

APPENDIX III – MAP AND WMA .. 19
HISTORY

GENERAL INFORMATION

Description
Blind River is a tributary of Lake Maurepas in the Lake Pontchartrain Basin. The headwaters begin approximately 2.5 miles north of Convent, Louisiana, 4.5 miles off the eastern levee of the Mississippi River. It flows northeast from St. James Parish through both Ascension and St. John the Baptist Parishes before discharging into Lake Maurepas. Blind River has numerous tributaries consisting mostly of pipeline canals and bayous. The majority of the watershed consists of Maurepas Swamp and surrounding developed land and agriculture.

River stage
Currently, there is no gauge station in Blind River. The nearest gauge is Amite River at French Settlement approximately 10 river miles northwest of where the Amite Diversion Canal converges with Blind River

(http://water.weather.gov/ahps2/hydrograph.php?wfo=lix&gage=flsl1&view=1,1,1,1,1,1,1,1,toggles=10,7,8,2,9,15,6&type=0).

Flood stage at French Settlement is at 4 feet.

Parishes located
St. James, Ascension, St. John the Baptist and Livingston Parishes (APPENDIX I – MAP AND PARISHES).

Border waters
Lake Maurepas
Amite River
Mississippi River (historically)

ACCESS

Boat docks
2 boat ramps
(SEE APPENDIX II – MAP AND LANDING)

Table 1. Locations of boat ramps for Blind River, LA.

<table>
<thead>
<tr>
<th>RAMP NAME</th>
<th>COORDINATES*</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. James Boat Club</td>
<td>30.1012389</td>
</tr>
<tr>
<td>LA Hwy. 642 Landing</td>
<td>30.0744861</td>
</tr>
</tbody>
</table>

* Coordinates listed in NAD 83, decimal degrees.
Piers
St. James Boat launch

State/Federal facilities
Maurepas Swamp WMA – There are 16 self-clearing permit stations located throughout the WMA, including stations at St. James Boat Club and LA Hwy. 642 Landing. http://www.wlf.louisiana.gov/wma/2791

PHYSICAL DESCRIPTION

Shoreline length
46 miles (both shorelines of 23 river miles)

Timber type
Bald cypress (Taxodium distichum) and tupelo gum (Nyssa aquatica)

Average depth
12 feet

Water fluctuation
Amite River at French Settlement had a historic high crest of 9.21 feet in August of 2016 and a historic low of -1.50 feet in December of 1954. High water periods are typical for late spring/early summer. High water is also influenced by local tropical storm events. Extremely low water (less than 1.0 feet at Amite River at French Settlement) is rare and only occurs during extreme drought.

Shoreline development
Less than 5% of the shoreline is developed by landowners. Most developments are camps that are only accessible by boat.

EVENTS / PROBLEMS

- Levees disconnect Blind River and surrounding swamps from the Mississippi River. The lack of fresh river water has led to deterioration of Maurepas Swamp and Blind River water quality. The lack of river water has also resulted in the occasional backflow of water from Lake Maurepas.
- The railroad and Highway US 61 act as dams to the transfer of water through the swamp system.
MANAGEMENT ISSUES

AQUATIC VEGETATION

Nuisance species

Common salvinia and water hyacinth have been the main subjects of access and habitat complaints over the past few years. Common salvinia is scattered throughout the basin and is constantly being restocked by the flushing and draining of adjacent swamps and bayous.

Estimates of vegetation coverage (as of November 13, 2017) are provided below:

Problematic Species-
- Common Salvinia (Salvinia minima) – 500 acres
- Water Hyacinth (Eichhornia crassipes) – 500 acres
- Duckweed (Lemna spp.) – 500 acres
- Duck Lettuce (Ottelia alismoides) – 500 acres

Beneficial Species
- Yellow Water Lily (Nymphaea mexicana) – 75 acres
- Coontail (Ceratophyllum demersum) – 45 acres

Control Measures

Biological Control

Salvinia weevils were stocked in the Blind River area in 2008 and will continue to be stocked as they become available. Shortly after the initial stocking, Hurricane Gustav impacted the region and flooded the small slough where our weevil enclosure was being harbored. The flood waters widely dispersed our very small concentration of weevils, inhibiting the ability for them to colonize the area. A site visit was made in 2009, samples were taken, and weevils were not found in samples pulled from the immediate or surrounding area. In late 2013, salvinia weevils living on common salvinia were again introduced into the Blind River area. Follow-up site visits have indicated that weevils are reproducing and spreading in the stocked area. Weevils have been and will continue to be stocked as they become available.

Table 2. Common salvinia weevil stockings on Blind River, LA from 2008-2014.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>NUMBER OF INDIVIDUALS</th>
<th>COORDINATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>500</td>
<td>30.139167</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-90.694722</td>
</tr>
<tr>
<td>2013</td>
<td>15,927</td>
<td>30.13862</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-90.786074</td>
</tr>
<tr>
<td>2014</td>
<td>9,000</td>
<td>30.09492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-90.77851</td>
</tr>
<tr>
<td>2014</td>
<td>7,900</td>
<td>30.15024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-90.80627</td>
</tr>
<tr>
<td>2017</td>
<td>23,900</td>
<td>30.14944</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-90.80701</td>
</tr>
</tbody>
</table>
Chemical Control

Problem areas are treated as they arise with foliar herbicide applications in accordance with the approved LDWF Aquatic Herbicide Application Procedures. Common salvinia should be treated from April 1 – October 31 with a mixture of glyphosate (0.75 gal/acre) and diquat (0.25 gal/acre) with Turbulence surfactant (or approved equivalent, 0.25 gal/acre). From November 1 – March 31, common salvinia will be controlled with diquat (0.75 gal/acre) and a 90:10 non-ionic surfactant (0.25 gal/acre).

Water hyacinth should be controlled with 2,4-D (0.5 gal/acre) and a 90:10 non-ionic surfactant (1 pint/acre) or glyphosate (0.75 gal/acre) and a 90:10 non-ionic surfactant (0.25 gal/acre).

The Blind River generates a large number of complaints each year, and they are addressed accordingly. An average of 836 acres of vegetation is chemically treated annually. In an average year, the majority of the treated vegetation is common salvinia and water hyacinth. The remaining acreage is typically composed of alligator weed, pennywort, primrose, water pspalum and duckweed (Table 3).

The use of herbicides is an important component of the LDWF integrated pest management program. The proper selection and use of herbicides is essential to achieve cost effective benefits and to avoid damage to non-target species. Each product listed has been approved by the Environmental Protection Agency for aquatic use. Aquatic vegetation is treated according to the Aquatic Herbicide Application Procedures as adopted by the LDWF Inland Fisheries Section (Table 4).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alligator weed</td>
<td>45</td>
<td>-</td>
<td>25</td>
<td>82</td>
<td>48</td>
<td>63</td>
<td>15</td>
<td>63</td>
<td>75</td>
<td>10</td>
</tr>
<tr>
<td>Duckweed</td>
<td>-</td>
<td>15</td>
<td>207</td>
<td>84</td>
<td>21</td>
<td>24</td>
<td>2</td>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pennywort</td>
<td>3</td>
<td>17</td>
<td>3</td>
<td>18</td>
<td>7</td>
<td>192</td>
<td>5</td>
<td>-</td>
<td>81</td>
<td>51</td>
</tr>
<tr>
<td>Primrose</td>
<td>71</td>
<td>-</td>
<td>3</td>
<td>9</td>
<td>-</td>
<td>1</td>
<td>69</td>
<td>179</td>
<td>89</td>
<td>6</td>
</tr>
<tr>
<td>Common salvinia</td>
<td>616</td>
<td>820</td>
<td>444</td>
<td>862</td>
<td>1001</td>
<td>183</td>
<td>161</td>
<td>178</td>
<td>168</td>
<td>-</td>
</tr>
<tr>
<td>Water hyacinth</td>
<td>149</td>
<td>48</td>
<td>86</td>
<td>29</td>
<td>47</td>
<td>105</td>
<td>-</td>
<td>494</td>
<td>1061</td>
<td>171</td>
</tr>
<tr>
<td>Water Paspalum</td>
<td>-</td>
<td>23</td>
<td>135</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>37</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td>14</td>
<td>1</td>
<td>-</td>
<td>29</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>72</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>898</td>
<td>923</td>
<td>903</td>
<td>1,185</td>
<td>1,124</td>
<td>583</td>
<td>252</td>
<td>1,041</td>
<td>1,523</td>
<td>239</td>
</tr>
</tbody>
</table>
Table 4. Foliar herbicide treatments by plant species and acres sprayed on the Blind River, Louisiana during 2017.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ACRES</th>
<th>HERBICIDES*</th>
<th>APPLICATION RATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alligator weed</td>
<td>10</td>
<td>2,4-D</td>
<td>0.5 gal/acre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imazapyr</td>
<td>0.5 gal/acre</td>
</tr>
<tr>
<td>Water hyacinth</td>
<td>171</td>
<td>2,4-D</td>
<td>0.5 gal/acre</td>
</tr>
<tr>
<td>Pennywort</td>
<td>51</td>
<td>2,4-D</td>
<td>0.5 gal/acre</td>
</tr>
<tr>
<td>Primrose</td>
<td>6</td>
<td>2,4-D</td>
<td>0.75 gal/acre</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>2,4-D</td>
<td>0.5 gal/acre</td>
</tr>
<tr>
<td>TOTAL</td>
<td>239</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*All foliar 2,4-D herbicide applications included a non-ionic surfactant at a rate of 0.125 gal/acre, imazapyr included Inergy surfactant at a rate of 0.25 gal/acre.

Limitations

During high water periods within this river complex, common salvinia floods into the surrounding swamps where it flourishes. The LDWF spray crews are unable to access these areas due to the stands of dense timber and shallow water. Consequently, healthy populations of common salvinia drain out of the swamp into the river when water levels drop.

HISTORY OF REGULATIONS

Standardized Regulations

Statewide standard commercial and recreational regulations apply.

http://www.wlf.louisiana.gov/regulations
FISH KILLS / DISEASE HISTORY

- July 29, 1991 – Unknown cause
- August 1992 – Hurricane Andrew
- May 24, 1996 – A pipeline failure resulted in the spill of 8,700 barrels of unleaded gasoline. The impact area was approximately two miles of right-of-way and tributaries between Hwy 61 to the KCS railroad tracks. A preliminary list of species included gar, bowfin, gizzard shad, freshwater drum, and sunfishes.
- August 2005 – Hurricane Katrina
- September 2008 – Hurricane Gustav
- August 2012 – Hurricane Isaac

CONTAMINANTS / POLLUTION

Water quality
In 2016, the EPA listed Blind River as an impaired river due to organic enrichment/depletion of oxygen, mercury in fish tissue, and the presence of non-native aquatic plants. The EPA listed atmospheric deposition as a potential source of mercury contamination.

Fish consumption advisory
A consumption advisory was issued April 23, 1998 after an unacceptable level of mercury was detected in bowfin. Women of child bearing age and children under the age of seven should limit bowfin consumption to no more than one meal per month. Other adults and children over the age of seven should limit bowfin consumption to no more than four meals a month. This advisory was last reviewed December 4, 2003.

BIOLOGICAL

Fish sampling
To monitor the sport fishery of Blind River, LDWF initiated standardized sampling in 1996 (Table 5).

Table 5. Historical and proposed sampling efforts on Blind River, LA from 1996 – 2020.
<table>
<thead>
<tr>
<th>YEAR</th>
<th>METHOD</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>Electrofishing</td>
<td>2 stations (spring and fall)</td>
</tr>
</tbody>
</table>
| 1997 | Electrofishing | 3 stations (spring)
| | | 4 stations (fall) |
| 2006 | Electrofishing | 4 stations (spring and fall) |
| 2007 | Electrofishing | 4 stations (spring and fall) |
| 2008 | Electrofishing | 4 stations (spring and fall) |
| 2009 | Electrofishing | 4 stations (spring and fall) |
| 2010 | Electrofishing | 4 stations (spring and fall) |
| 2012 | Electrofishing | 4 stations (spring and fall)
| | | Hoop nets – 3 sites |
| 2013* | Electrofishing | 4 stations (spring and fall)
| | | Ichthyoplankton trawls – 2 stations (May, June, July) |
| 2014* | Electrofishing | 4 stations (spring and fall)
| | | Ichthyoplankton trawls – 2 stations (April, May, June) |
| 2018 | LMB age, growth, & mortality project | Electrofishing |
| 2019 | LMB age, growth, & mortality project | Electrofishing |
| 2020 | LMB age, growth, & mortality project | Electrofishing |

*Years of post-hurricane electrofishing sampling efforts to measure natural recovery of fishery.

Stocking History

Initial stocking efforts were a response to major fish kills caused by Hurricane Andrew. Subsequent stockings were the result of Hurricanes Katrina and Gustav. Blind River has been stocked with 442,790 Florida strain largemouth bass since 1995 (Table 6).

Table 6. Stocking history of Blind River, LA from 1993 – 2011.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>CHANNEL CATFISH</th>
<th>LARGEMOUTH BASS</th>
<th>FLORIDA BASS</th>
<th>BLACK CRAPPIE</th>
<th>BLUEGILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>3,600</td>
<td>64,273</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>1,800</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td>27,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td>27,032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td>9,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td>12,043</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A majority of these fish were stocked post hurricanes Katrina and Gustav, in response to public outcry over the massive fish kills that occurred following these storm events. In the post storm absence of predation and competition, the Florida largemouth bass should have become dominant in this coastal river. However, this species failed to become established. Genetic testing conducted in 2010 indicated that less than 7% of the Florida genome was present in the sample results (Table 7). The stockings of Florida largemouth bass in the nearby Tangipahoa, Tickfaw and Amite Rivers yielded similar results (Table 8). The tenacity for recovery of native largemouth bass populations has also been noted in other coastal river systems including the Calcasieu, Mermentau and Sabine rivers in southwest Louisiana following Hurricanes Rita (2005) and Ike (2008). These systems received little to no stockings of largemouth bass before and after the hurricane related fish kills, yet yielded record catch rates within two years into recovery. These observations suggest that native coastal populations of largemouth bass (and other indigenous fish species) have adapted to these periodic storm events and rapid recovery is part of the natural selection process.

Largemouth bass genetics

Over 442,000 Florida largemouth bass have been stocked regularly into Blind River since 1995. A majority of these fish were stocked post Hurricanes Katrina and Gustav in response to massive fish kills. As shown in Table 7, genetic testing of 206 largemouth bass in 2010 showed that less than 7% of the fish sampled were carriers of the Florida allele.

Table 7. Results of 2010 genetic testing for the Florida largemouth bass gene on Blind River, Louisiana.

<table>
<thead>
<tr>
<th>Number of fish</th>
<th>% Northern</th>
<th>% Hybrid</th>
<th>% Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td>93.7</td>
<td>5.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 8. FLMB stocking details and the resulting genetic composition of northern, Florida, and Fx largemouth bass (intraspecific hybrids) collected during fall electrofishing samples 1996 - 2013.

<table>
<thead>
<tr>
<th>River/Marsh</th>
<th>Years</th>
<th>Number</th>
<th>Sample</th>
<th>Native</th>
<th>Florida</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Stocked</td>
<td>stocked</td>
<td>size</td>
<td>LMB Average %</td>
<td>LMB Average %</td>
<td>LMB Average %</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>----------</td>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Amite River</td>
<td>1996-2010</td>
<td>780,308</td>
<td>151</td>
<td>91</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Atchafalaya Basin</td>
<td>1992-2009</td>
<td>5,600,000</td>
<td>219</td>
<td>93.7</td>
<td>0.3</td>
<td>6</td>
</tr>
<tr>
<td>Blind River</td>
<td>1995-2009</td>
<td>439,440</td>
<td>206</td>
<td>93.7</td>
<td>0.5</td>
<td>5.8</td>
</tr>
<tr>
<td>Caernarvon</td>
<td>1996-2008</td>
<td>1,267,277</td>
<td>409</td>
<td>83</td>
<td>4.8</td>
<td>12.2</td>
</tr>
<tr>
<td>Cataouatche</td>
<td>2002-2013</td>
<td>52,528</td>
<td>554</td>
<td>84</td>
<td>2.1</td>
<td>13.9</td>
</tr>
<tr>
<td>Des Allemands</td>
<td>1993-2011</td>
<td>1,747,752</td>
<td>48</td>
<td>88.2</td>
<td>0</td>
<td>11.8</td>
</tr>
<tr>
<td>Tangipahoa</td>
<td>1996-2011</td>
<td>156,052</td>
<td>30</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tickfaw</td>
<td>1996-2011</td>
<td>368,214</td>
<td>93</td>
<td>93</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>COMBINED SYSTEMS</td>
<td>1992-2013</td>
<td>10,411,571</td>
<td>1,710</td>
<td>90.8</td>
<td>1.2</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Species profile
A list of species collected or known from Blind River is found in Table 9 below:

Table 9. Fish species collected or known to occur in the Blind River watershed, LA.

Family, Scientific and Common Names
- Achiridae – American soles
 - *Trinectes maculates* - northern hogchoker
- Acipenseridae – sturgeons
 - *Acipenser oxyrhynchus* - Atlantic sturgeon
- Amiidae – bowfin
 - *Amia calva* – bowfin
- Aphredoderidae – trout perches
 - *Aphredoderus sayanus* - pirate perch
- Anguillidae – freshwater eels
 - *Anguilla rostrata* - American eel
- Atherinopsidae - New World silversides
 - *Labidesthes sicculus* - brook silverside
 - *Menidia beryllina* - inland silverside
- Catostomidae – suckers
 - *Carpiodes carpio* - river carpsucker
 - *Erimyzon sucetta* - lake chubsucker
 - *Erimyzon oblongus* - creek chubsucker
Erimyzon claviformis - western creek chubsucker
Erimyzon tenuis - sharpfin chubsucker
Hypentelium nigricans - northern hogsucker
Minytrema melanops - spotted sucker
Moxostoma poecilurum - blacktail redhorse
Ictiobus bubalus - smallmouth buffalo
Ictiobus cyprinellus - bigmouth buffalo
Ictiobus niger - black buffalo

Centrarchidae - sunfishes
 Ambloplites ariommus - shadow bass
 Centrarchus macropterus - flier
 Elassoma zonatum - banded pygmy sunfish
 Lepomis cyanellus - green sunfish
 Lepomis humilis - orangespotted sunfish
 Lepomis macrochirus - bluegill
 Lepomis gulosus - warmouth
 Lepomis marginatus - dollar sunfish
 Lepomis megalotis - longear sunfish
 Lepomis microlophus - redear sunfish
 Lepomis symmetricus - bantam sunfish
 Micropterus punctulatus - spotted bass
 Micropterus salmoides - largemouth bass
 Pomoxis annularis - white crappie
 Pomoxis nigromaculatus - black crappie

Clupeidae – herrings
 Alosa chrysochloris - skipjack herring
 Dorosoma cepedianum - gizzard shad
 Dorosoma petenense - threadfin shad
 Brevoortia patronus - Gulf menhaden

Cyprinidae - carps and minnows
 Macrhybopsis aestivalis - speckled chub
 Notemigonus crysoleucas - golden shiner
 Hybopsis amnis - pallid shiner
 Notropis maculatus - taillight shiner
 Notropis texanus - weed shiner
 Cyprinella venusta - blacktail shiner
 Opsopoeodus emiliae - pugnose minnow
 Pimephales promelas - fathead minnow
 Pimephales vigilax - bullhead minnow
 Hybognathus hayi - cypress minnow
 Cyprinus carpio - common carp
 Notropis atherinoides - emerald shiner
 Hypophthalmichthys molitrix - silver carp

Elopidae – tarpons
 Elops saurus – ladyfish

Engraulidae – anchovies
Anchoa mitchilli - bay anchovy

Esocidae – pikes
 Esox americanus - grass pickerel
 Esox niger - chain pickerel

Fundulidae – topminnows and killifishes
 Fundulus chrysotus - golden topminnow
 Fundulus catenatus - studfish
 Fundulus notatus - blackstripe topminnow
 Fundulus olivaceus - blackspotted topminnow
 Fundulus euryzonus - broadstripe topminnow

Ictaluridae - North American catfishes
 Ameiurus melas - black bullhead
 Ameiurus natalis - yellow bullhead
 Ameiurus nebulosus - brown bullhead
 Ictalurus furcatus - blue catfish
 Ictalurus punctatus - channel catfish
 Pylodictis olivaris - flathead catfish
 Noturus gyris - tadpole madtom

Lepisosteidae - gars
 Lepisosteus oculatus - spotted gar
 Lepisosteus osseus - longnose gar
 Lepisosteus platostomus - shortnose gar
 Lepisosteus spatula - alligator gar

Moronidae – temperate basses
 Morone mississippiensis - yellow bass
 Morone chrysops - white bass

Mugilidae – mullets
 Mugil cephalus - striped mullet

Petromyzontidae - northern lampreys
 Ichthyomyzon gagei - southern brook lamprey

Paralichthyidae – flounders
 Paralichthys lethostigma - southern flounder

Percidae – perches
 Etheostoma chlorosomum - bluntnose darter
 Etheostoma fusiforme - swamp darter
 Etheostoma proeliare - cypress darter
 Percina sciera - dusky darter
 Percina caprodes – logperch

Poeciliidae – livebearers
 Gambusia affinis - western mosquitofish
 Poecilia latipinna - sailfin molly
 Heterandria formosa - least killifish

Polyodontidae – paddlefishes
 Polyodon spathula – paddlefish

Sciaenidae – drums
 Aplodinotus grunniens - freshwater drum
Micropogonias undulatus - Atlantic croaker
Sparidae – porgies
Archosargus probatocephalus - sheepshead
Lagodon rhomboides – pinfish
Syngnathidae – pipefishes and seahorses
Syngnathus scovelli - Gulf pipefish

Threatened/endangered/exotic species
The pallid sturgeon (Scaphirhynchus albus) inhabits the reach of the Mississippi River adjacent to where it used to connect to Blind River. Paddlefish (Polyodon spathula), Alabama shad (Alosa alabamae) and Gulf sturgeon (Acipenser oxyrinchus desotoi) are inhabitants of the Lake Pontchartrain Basin.

Beginning in early summer of 2012, adult silver carp (Hypophthalmichthys molitrix) have been observed in the nearby Amite River. These fish may have been introduced via the Bonnet Carré Spillway operation by the US Army Corps of Engineers during the 2011 flood event. To date, no juveniles have been observed.

The invasive apple snail (Pomacea maculata) has been documented in the New River Canal, a discharge canal that empties into the Petite Amite River, which empties into the Blind River. As of summer 2018, heavy infestations of the snail have been reported throughout the area.

ANGLER SURVEYS
No angler surveys have been conducted

HYDROLOGICAL CHANGES

- Mississippi River levee resulted in the lack of fresh river water entering the system.
- Construction of Highway 61 and railroad have impeded water flow through adjacent swamp

WATER USE

Hunting
Yes. Maurepas Swamp Wildlife Management Area encompasses more than half of Blind River and its tributaries (APPENDIX III – MAP AND WMA).

Skiing
Yes

Scuba Diving
No

Swimming
Yes

Irrigation
No

Fishing
Yes

Boating
Yes
APPENDIX I – MAP AND PARISHES
(Return to document)
APPENDIX II – MAP AND LANDING

(return to boat docks)
APPENDIX III – MAP AND WMA

(Return to Hunting)