Assessment of Red Drum Sciaenops ocellatus in Louisiana 2022 Report ## **Executive Summary** Landings of Red Drum in Louisiana have remained above 5 million pounds per year in the most recent decade with the exceptions of 2016, 2020, and 2021. The highest harvest on record (over 15 million pounds) occurred in 1986. After commercial regulations were enacted in the late 1980's, Red Drum landings substantially declined from the 1986 peak. The recreational fishery now comprises 100 percent of the directed Louisiana Red Drum harvest. A statistical catch-at-age model is used in this stock assessment to describe the dynamics of Red Drum in Louisiana and adjacent federal waters from 1982-2021. The assessment model projects abundance-at-age from estimates of abundance in the initial year of the time-series and recruitment estimates in subsequent years. Minimum data requirements are fishery catch-at-age and an index of abundance. Landings are taken from the Louisiana Department of Wildlife and Fisheries (LDWF) Recreational Creel Survey, National Oceanic and Atmospheric Administration (NOAA) Fisheries commercial statistical records, and NOAA Fisheries Marine Recreational Information Program (MRIP). Indices of abundance are developed from the LDWF estuarine trammel net survey and the LDWF component of the Southeast Area Monitoring and Assessment Program (SEAMAP) nearshore bottom long line survey. Estimates of absolute abundance are taken from the NOAA Fisheries northern Gulf of Mexico (GOM) mark-recapture experiments. Age composition of fishery catches are estimated with age-length-keys derived from fishery age samples and a growth model. Management thresholds have been established, though the Gulf of Mexico Fishery Management Council (GMFMC), for Red Drum in the state of Louisiana as a 20% spawning potential ratio, which is based on a 30% escapement rate from the inshore fishery. Based on results of this assessment, the Louisiana Red Drum stock is currently not overfished, but is experiencing overfishing. The current spawning potential ratio estimate is 40% and the current escapement rate estimate is 20%. The recent downturn in recreational landings are due to a series of below average annual recruitment to the stock where the most recent annual recruitment estimates are the lowest of the time-series examined. Management actions will be needed in order to prevent future overfishing and prevent the stock from becoming overfished. # Assessment of Red Drum *Sciaenops ocellatus* in Louisiana 2022 Report # Joe West, Erik Lang, Xinan Zhang and Jason Adriance Office of Fisheries Louisiana Department of Wildlife and Fisheries ## Table of Contents | Executive Summary | 1 | |--|-------| | 1. Introduction |
4 | | 1.1 Fishery Status | 4 | | 1.2 Fishery Regulations |
6 | | 1.3 Trends in Harvest | 7 | | 2. Data Sources | 8 | | 2.1 Fishery Independent | 8 | | 2.2 Fishery Dependent | .11 | | 3. Life History Information | .13 | | 3.1 Unit Stock Definition | .13 | | 3.2 Morphometrics | .13 | | 3.3 Growth | . 14 | | 3.4 Fecundity / Maturity / Sex Ratio | . 14 | | 3.5 Natural Mortality | . 15 | | 3.6 Discard Mortality | . 15 | | 3.7 Relative Productivity and Resilience | . 15 | | 4. Abundance Index Development | .16 | | 5. Catch at Age Estimation | . 17 | | 5.1 Fishery | .18 | | 5.2 Survey | . 19 | | 6. Assessment Model | . 19 | | 6.1 Model Configuration | .20 | | 6.2 Model Assumptions/Inputs | .23 | | 6.3 Model Results | . 24 | | 6.4 Management Benchmarks | .26 | | 6.5 Model Diagnostics | .28 | | 7. Stock Status | 29 | |----------------------------|-----| | 8. Research and Data Needs | 30 | | 9. References | 31 | | 10. Tables | 36 | | 11. Figures | 91 | | Appendix 1: | 110 | | Appendix 2: | 120 | | Appendix 3: | 129 | | Appendix 4: | 143 | | | | #### 1. Introduction A statistical catch-at-age model is used in this stock assessment to describe the dynamics of Red Drum Sciaenops ocellatus in Louisiana (LA) and adjacent federal waters from 1982-2021. The assessment model projects abundance-at-age from estimates of abundance in the initial year of the time-series and recruitment estimates in subsequent years. The model is fit to the data with a maximum likelihood fitting criterion. Derivation of each of the data elements used in this assessment are described in detail in the Data Sources Section, but are summarized here. Commercial landings are taken from National Oceanic and Atmospheric Administration (NOAA) Fisheries commercial statistical records. Recreational harvest estimates are obtained from the Louisiana Department of Wildlife and Fisheries (LDWF) Recreational Creel Program (LA Creel) and estimates hindcast to the historic NOAA Fisheries Marine Recreational Information Program (MRIP) time-series. Indices of relative abundance are developed from the LDWF estuarine trammel net survey and the LDWF component of the Southeast Area Monitoring and Assessment Program (SEAMAP) nearshore bottom long line survey. Estimates of absolute abundance are taken from the NOAA Fisheries northern Gulf of Mexico (GOM) mark-recapture experiments. Age composition of recreational fishery catches are estimated with age-length-keys derived from otolith samples of the fishery (2002-2021) and a growth model (1982-2001). Age composition of commercial landings are estimated with age samples of the fishery (offshore) and age-length-keys derived from a growth model (inshore). ## 1.1 Fishery Status A comprehensive history of the Red Drum (RD) resource and associated fishery within LA is described in Hoese et al. (1991) and for the Gulf of Mexico in GMFMC/GSMFC (1984). A current summary of the Louisiana RD fishery is presented below. ## **Commercial** Red Drum are no longer allowed to be landed commercially in Louisiana. Prior to 1984, no specific commercial RD regulations existed in LA. Through the 1950s and 1960s, LA commercial landings of RD fluctuated between 400,000 to 500,000 pounds annually. By the late 1960s, LA landings began to increase steadily to nearly 1 million (M) lbs by 1972 and 2.2M lbs by 1976 with significant numbers of juvenile RD taken from inshore waters. Landings decreased to just over 1M lbs by the late 1970s, which can be attributed to restricting nets to 1,200 feet in length, prohibiting the use of monofilament gillnets, and changing the allowable mesh size for gill and trammel nets. Additionally, netting was prohibited in parts of Lake Pontchartrain, parts of Lake Borgne, and within one mile of the Chandeleur Islands beginning in 1978. Then, a rapid expansion of the fishery occurred in 1980 with landings reaching 7.8M lbs by 1986. Prior to 1960, the majority of fish landed in Louisiana were from haul seines and hook-and-line, but starting in 1970, most of the increase in landings came from the use of gill and trammel nets. An additional increase in landings after 1985 was the result of an increase in the use of purse seines, which contributed an additional 3.4M lbs in landings in 1986. This increased pressure was directed at adults, whereas the entangling nets were mainly fished inshore and primarily targeted subadults and juveniles. Prior to the 1980s, most of the RD landed in LA supplied local markets, especially in New Orleans. However, the popularity of blackened redfish peaked nationwide, especially in New York markets, and lead to increased demand, which increased harvest of adult RD throughout the 1980s. Given the increased demand from restaurants, commercial fishermen responded by catching RD in record numbers during 1986 and 1987. Landings fell dramatically in 1988 as a quota of 1.8M lbs was established late in 1987 and was reached by the end of February in 1988. In July of 1988, a commercial harvest moratorium was established for three years through legislation and that moratorium was extended indefinitely in 1991, although a few thousand pounds were still reported landed sporadically until 1998. ## Recreational Red Drum has always been one of the more popular fish with LA anglers. There are numerous mentions of people targeting them along the extensive marsh coastline since the mid-1800s and early 1900s (Daily Picayune 1892; Meise 1930). Norris (1865) mentioned RD in the GOM as a fish that will "...afford fine sport. They strike boldly, and run off thirty or forty feet of line at the first dash; as the mouth is fleshy, they are seldom lost when fairly hooked." In 1984, LDWF conducted a recreational angler survey of nearly 13,000 individuals at various access points coast-wide (Adkins et al. 1990). Spotted Seatrout and RD were the preferred species of most anglers (63.8% and 49.3% respectively). Their results indicated that RD catches were lowest in the late spring and peaked in the fall (October-December). In an earlier survey in Barataria Bay (1975-1977) published by Guillory and Hutton (1990), Louisiana recreational anglers caught RD primarily with live bait (38.4%) and dead/cut bait singly (29.1 %) or in combination with artificial baits (18.2%). Kelso et al. (1994) surveyed LA saltwater anglers and found similar results to Adkins et al. (1990) with the majority of respondents (56.1%) preferring Spotted Seatrout and 36.2% of respondents indicating a preference for RD. The results were reversed when asked about night fishing activities with the majority (53.1%) preferring RD over Spotted Seatrout. Flounder was the third most targeted species in either day or night fishing (Kelso et al. 1994). Recent LDWF unpublished LA Creel data (2017-2020) of statewide private inshore and shore based anglers indicates RD are the target of choice 37% of the time (Spotted Seatrout = 40% and no target = 18%) with a higher proportion of anglers targeting RD from the Vermilion Basin westward. There were no regulations on the recreational harvest of RD in Louisiana prior to 1984 when a recreational bag limit was set at 50 RD and/or spotted seatrout per day in combination with no minimum size limit
and only two fish ≥36 inches allowed. The first minimum size limits of RD were established in 1987. After their popularity increased with the blackened redfish craze in the mid-1980s, the Louisiana legislature approved gamefish status for RD in 1988. The trends in recreational harvest since 1982 follow regulatory changes fairly well with a gradual reduction in harvest through 1987 under the first minimum size limits and new bag/possession limits, and the sharp decline in 1988 with the closing of all RD fishing from February through June and the new daily bag of 5 fish/angler that began in July 1988. Recreational harvest has increased steadily since RD attained gamefish status with exceptions during extraordinary years with active tropical storm seasons or following severe winters with major freeze events. #### 1.2 Fishery Regulations The LA RD fishery is governed by the Louisiana State Legislature, the Wildlife and Fisheries Commission, and the LDWF. A review of LA commercial and recreational RD regulations are presented below. #### Commercial The RD fishery in Louisiana was mostly unregulated until the late 1970s. In 1977, monofilament webbing was banned in all saltwater nets (except those engaged in the underutilized species program while fishing pompano and black drum). In that same year, a maximum net length of 1,200 feet with a minimum mesh size of 2-inch bar for saltwater gillnets and a minimum 1-inch bar for the inside wall of saltwater trammel nets and fish seines was established. Additionally, netting was prohibited in parts of Lake Pontchartrain, parts of Lake Borgne, and within one mile of the Chandeleur Islands beginning in 1978. In 1980, a minimum bar size of 3-inches was established for the outer layer of saltwater trammel nets and further restrictions in 1983 mandated that all saltwater trammel nets consist of three layers. Size limits were first established for the commercial RD fishery in 1984 when a commercial slot limit of a minimum of 16-inches and a maximum of 36-inches total length was established. Also in 1984, further net restrictions were put in place that required a 1 ¾-inch bar for all saltwater gillnets and a 1 5/8-inch bar for the inside wall of saltwater trammel nets with a maximum mesh size of 12-inches bar for the outside of trammel nets. By 1986, the commercial slot limit maximum was reduced to 30-inches total length and all vessels carrying purse seines were banned from possessing red drum. In 1987, commercial net and size regulations were changed again by adjusting the commercial slot limit to a minimum of 18-inches and a maximum of 30-inches total length and minimum bar mesh sizes were changed to 1 ¾-inches for the inside wall of trammel nets and 1 ¾-inches for saltwater gillnets. A commercial quota of 1.8M lbs was also established in September of 1987. In February of 1988 the commercial RD fishery in Louisiana was closed after reaching the quota and a 3-year moratorium was established on commercial harvest while the Louisiana legislature granted gamefish status to RD in the same year. In 1991 the commercial harvest moratorium on RD was extended indefinitely and remains in place to date with no commercial harvest of RD allowed in Louisiana. #### Recreational In 1984, recreational RD harvest regulations were implemented that established a recreational creel limit of 50 fish (combined RD and Spotted Seatrout) with no minimum size limit, but did include a maximum size limit of no more than two fish over 36-inches total length. In 1986, recreational size limits were adjusted to allow for no more than 2 fish over 30-inches total length. In 1987, a slot limit was enacted that established a minimum size of 14-inches total length and incorporated a maximum size of 30-inches total length, with no more than 2 fish over 30-inches allowed. Two changes in recreational size limits occurred in 1988, with a recreational minimum size limit of 15-inches total length implemented in January of that year with no change in creel or maximum size limits. In July of 1988, the recreational creel limit was changed to 5 fish per person and the slot limit was changed to a 16-inch total length minimum and a 27-inch total length maximum with no more than one fish over 27-inches allowed. In 1997, an allowance for two days possession of RD was made when on land or if a recreational saltwater angler is aboard a trawler engaged in commercial fishing for a consecutive period of longer than 25 hours. Further modifications to possession limits were made in 2018 that allowed for 3 times the daily possession limit if an angler launched from a publically accessible launch below Highway 90 and the angler has been actively on the water or at a remote camp only accessible by water for two days or more. In 2018, exceptions were also made for possession of red drum fillets. An angler, who launches from a access point south of Highway 90 and has been actively on the water or at a remote camp only accessible by water, can possess filleted RD, up to the possession limit of RD so long as there is sufficient skin remaining to identify the fillet to species and that the fillet is no less than 14-inches in length. #### 1.3 Trends in Harvest Time-series of commercial RD landings (LA inshore and GOM offshore), and LA recreational RD landings and live releases (1982-2021) are presented (Tables 1, 2, and 3). See Section 2.2 for details of each data source. #### Commercial Time-series of commercial RD harvest in the Gulf of Mexico are presented in Tables 1-2 and Figure 1. Red Drum are no longer allowed to be landed commercially in Louisiana. Through the 1950s and 1960s commercial landings of RD in Louisiana fluctuated between 400,000 to 500,000 lbs annually. By the late 1960s, Louisiana RD landings began to increase steadily to nearly 1M lbs by 1972 and 2.2M lbs by 1976. Some of the decline in landings in the late 1970s can be attributed to net restrictions established throughout the decade. A rapid expansion of the fishery then occurred in 1980 with landings reaching 7.8M lbs by 1986. Most of the increase in landings came from the use of gill and trammel nets. An additional increase in landings after 1985 were the result of an increased use of purse seines, which contributed an additional 3M lbs to the landings in 1986. Landings fell dramatically in 1988 as a quota of 1.8M lbs was established late in 1987 and was reached by the end of February 1988. In July of 1988, a commercial harvest moratorium was established for three years through legislation and that moratorium was extended indefinitely in 1991, although some RD were reported landed in a few years until 1998. ## **Recreational** Recreational landing estimates of RD in LA has varied considerably over the available time-series from a minimum of 0.44M fish harvested in 1988 to a peak of 2.0M fish harvested in 2010. After 1988, recreational RD landings generally increased up to 1.7 million fish harvested in 2000. Landings decreased between 2000 and 2005 to 0.93 million fish harvested in 2005. After 2005, recreational landings increased again to the peak of 2.0 million fish in 2010 before declining to 1.0 million fish landed in 2016. Landings increased again in 2017 and 2018 to 1.6 and 2.0 million fish respectively and then declined to 1.1 million fish harvested in 2020 and 0.74 million fish harvested in 2021. Estimates of recreational live release are substantial when compared to the landings estimates. After implementation of recreational minimum size limits, more RD were released than harvested. In the most recent decade, live releases comprised 59% of the total recreational catch. ## 2. Data Sources ## 2.1 Fishery Independent ## LDWF Trammel Net Survey The LDWF fishery-independent (FI) estuarine trammel net survey is used in this assessment to develop an index of relative abundance (1985-2021) and corresponding age compositions as inputs of the assessment model. Below is a brief descriptions of the surveys methodology. Complete details can be found in LDWF (2018). For sampling purposes, coastal Louisiana is currently divided into five LDWF coastal study areas (CSAs). Current CSA definitions are as follows: CSA 1 – Mississippi State line to South Pass of the Mississippi River (Pontchartrain Basin); CSA 3 – South Pass of the Mississippi River to Bayou Lafourche (Barataria Basin); CSA 5 – Bayou Lafourche to eastern shore of Atchafalaya Bay (Terrebonne Basin); CSA 6 – Eastern shore of Atchafalaya Bay to western shore of Freshwater Bayou Canal (Vermillion/Teche/Atchafalaya Basins); CSA 7 – western shore of Freshwater Bayou Canal to Texas State line (Mermentau/Calcasieu/Sabine Basins). The LDWF Marine Fisheries Section conducts routine standardized sampling within each CSA as part of a long-term comprehensive monitoring program to collect life-history information and measure relative abundance/size distributions of recreationally and commercially important species. The trammel net survey is conducted with standardized design from October-March. Hydrological and climatological measurements are taken with each biological sample, including water temperature, turbidity, conductivity and salinity. Survey gear is a 750-foot long and 6-foot depth net, consisting of 3 walls constructed of nylon. The inner wall has 1 5/8-inch bar mesh wall, and the two outer walls have 6-inch bar mesh wall. Samples are taken by 'striking' the net. All captured RD are enumerated and a maximum of 50 randomly selected RD are collected for length measurements, gender determination, and maturity information. When more than 50 RD are captured, catch-at-size is derived as the product of total catch and proportional subsample-at-size. This survey was conducted from 1985 to October 2013 at fixed sampling stations within each CSA. In October 2010, additional fixed stations were added to allowing more spatial coverage within each CSA. Beginning in 2013, the survey design was modified where sampling locations are
now selected randomly from the established stations within each CSA (Figure 2). ## SEAMAP Inshore Bottom Long Line Survey The SEAMAP nearshore bottom long line (BLL) survey complements the existing long-term survey conducted by NOAA Fisheries but focuses on the shallow nearshore depths of the northern GOM. Study objectives are to characterize shark and finfish distributions and abundance in the shallow nearshore depths. The LA component of the SEAMAP nearshore BLL survey conducted by LDWF is used in this assessment to develop an index of relative abundance of adult RD (2015-2021) and corresponding age compositions as inputs of the assessment model. Below is a brief descriptions of the survey methodology. Complete details can be found in SEAMAP (2013). The inshore BLL survey is conducted with standardized design using a 1 nautical mile longline with 100 equally spaced ganglions and hooks. A single bait type is used to reduce to minimize variability in catches associated with the bait used. Sample locations are chosen randomly (Figure 3) and the gear is fully deployed and allowed to soak for one-hour before retrieval at each location while environmental measurements are collected. The gear is typically set parallel to depth contours and catch data are collected as the long line is retrieved. #### NOAA Fisheries Mark-Recapture Experiments Estimates of absolute abundance of RD are available from experiments conducted in the northern GOM waters from Alabama to Texas in 1986-1987 (Nichols 1988) and a decade later (Mitchell and Henwood 1998). Below are brief descriptions of the two studies. Both studies utilized purse seines to capture schooling red drum where a proportion of the catches were tagged and released. After several months at large, the offshore schools were resampled to determine the ratio of tagged to untagged fish in the population. Abundance estimates in the study area were then calculated using the Peterson method after accounting for tagging mortality, tag shedding, and the fraction of mortality that occurred between the initial sampling and resampling events. Because the studies did not cover the entire range of RD in offshore waters of the northern GOM, estimates were expanded to account for RD occurring outside of the study area. However, the study area did include all of Louisiana. The estimate of adult RD from the first study (Nichols 1988) without expansion to outside the study area was 5.3 million fish with a relative standard error (RSE) of 17% (Table 4). The latter study (Mitchell and Henwood 1998) unfortunately encountered poor weather conditions which impeded the resampling of the adult RD schools, and no recaptures were made in the western zone of the study (west of the Mississippi River). Estimates of abundance were reported for 3 scenarios in the western zone (0 recaptures, 1 recapture, and 2 recaptures) due to the poor sampling conditions and lack of recaptures (Table 4). The estimated abundances for the entire study area without expansion to outside the study area from each recapture scenario were 15.1, 7.8, and 5.4 million fish respectively (RSE= 68%). ## Age Composition of Offshore Schools The age composition of offshore RD schools have been sampled by researchers with NOAA Fisheries and the Louisiana State University (LSU) College of the Coast and Environment (CCE) as part of the Marine Fisheries Initiative Program (MARFIN). These studies randomly sampled offshore RD schools using methods similar to the earlier offshore fishery (i.e., spotter planes and commercial purse seine vessels). Some of these data were collected to characterize the age composition of offshore RD as part of the mark-recapture studies described above. The age frequency data available from these projects, converted from biological to calendar ages, are presented in Table 5 (data courtesy of Dave Neiland, formerly with LSU CCE). The 1987 and 1997 age frequencies are used to represent the age composition of the NOAA Fisheries mark-recapture estimates in the assessment model. ## 2.2 Fishery Dependent #### Commercial Commercial RD landings are taken from NOAA Fisheries commercial statistical records as reported in the most recent federal red drum stock assessment (Porch 2000; Table 1). In the assessment model, inshore LA landings are used to represent the inshore commercial fishery operating in LA waters and the Gulf of Mexico (GOM) offshore landings are used to represent the offshore commercial fishery that operated across state boundaries. Estimates of commercial live releases are not available and are not considered further in this assessment. Size compositions of LA inshore commercial harvest and GOM offshore commercial harvest are available from historical port sampling (Russell 1988; Figure 4). No age composition samples are available for the LA inshore commercial inshore fishery. The size composition information from the Russel samples collected from the inshore fishing gears (hook and line, trammel nets, and non-runaround gillnets) are pooled to develop a single size distribution to represent LA inshore commercial landings (Table 5). Ages are then assigned to the inshore commercial catches from a growth model (see 5. Catch at Age Estimation). Age composition samples of landings of the offshore purse seine fishery are available for a limited number of years (Beckman 1989; Table 5). The size composition information from the Russel samples collected from the offshore fishing gears (purse seines, haul seines, and runaround gillnets) are pooled (Table 5) to represent GOM offshore commercial landings for purposes of mean weight calculations. #### Recreational Recreational RD landings and live release estimates (Table 3) are taken from the LDWF recreational creel survey (LA Creel; 2014-2021) and estimates hindcast to the historic MRIP time-series (1982-2013; details in *Appendix 1*). Consequently, the pre-2014 recreational estimates used in this assessment differ from the LA estimates currently published by MRIP (https://www.st.nmfs.noaa.gov/recreational-fisheries/data-and-documentation/queries/index). Furthermore, due to changes made to the MRIP Access Point Angler Intercept Survey (APAIS) in 2013 (see https://www.fisheries.noaa.gov/topic/recreational-fishing-data#making-improvements) and the recent transition from the MRIP Coastal Household Telephone Survey to the new Fishing Effort Survey (FES; see <a href="https://www.fisheries.noaa.gov/recreational-fishing-data/types-recreational-fishing-surveys#fishing-data/types-recreational-fishing-surveys#fishing-surveys#fishing-data/types-recreational-fishing-surveys#fishing-data/types-recreational-fishing-surveys#fishing-data/types-recreational-fishing-surveys#fishing-data/types-recreational-fishing-data/ <u>effort-survey</u>), harvest estimates currently available from MRIP also differ from those used in prior LDWF RD stock assessments (LDWF 1997, Shepard 2005, Blanchet 2006). Live releases are further delineated as undersized/non-undersized with the LA Creel and MRIP catch disposition codes. Annual seasonal size compositions of RD harvest estimates are derived from the LDWF Biological Sampling Program (2014-2021; Table 6) and MRIP (1982-2013, post APAIS and FES calibration changes; Table 6). Seasons represent January–April (season 1), May-August (season 2), and September-December (season 3). Size compositions from the LDWF Biological Sampling Program are derived by statistically weighting the size composition samples by the corresponding recreational landings estimates for each basin (CSA) and mode of fishing (Private and Charter). Size compositions of non-undersized live releases are assumed equivalent to harvest. Size composition of under-sized releases in each year and season are estimated by pooling the annual seasonal size frequency information available prior to implementation of the 16-inch MLL and using those distributions as a proxy of undersized catches beginning in 1988. Ages of recreational red drum landings are derived from a growth model (1982-2001) and otoliths collected from the recreational fishery (2002-2021; see 5. Catch at Age Estimation). #### Bycatch ## Menhaden Reduction Fishery Time series of incidental catch of RD from the LA menhaden reduction fishery have been developed from observations of retained and released red drum CPUE (numbers per purse seine set) and annual effort estimates of the menhaden reduction fishery (LDWF 2020, see *Appendix 2*). The mean estimates of red drum bycatch in the most recent decade indicate low levels of RD bycatch relative to the landings of the directed LA fisheries (~2% in units of weight). The time series of mean RD bycatch estimates from the LA menhaden reduction fishery are included as a fleet in the base assessment model (see *6. Assessment Model*). ## Shrimp Fishery Bycatch has been characterized for the 2019-2020 inshore LA shrimp fishery (Cagle and West 2020; see *Appendix 3*). Incidental catches were only observed for 5 large red drum that were all released alive. The total LA
inshore bycatch of red drum can be estimated over the study period (July 2019 through June 2020) as the product of inshore LA effort over that period (number of trips=37,203) and the RD CPUE estimate of the bycatch study (5 individuals/ 33 trips observed=0.152) which equates to 5,637 fish. Due to the low level of RD bycatch in the LA shrimp fishery relative to the landings of the LA directed fisheries (<1% in units of fish in 2020), incidental RD catches of the LA inshore shrimp fishery are not considered further in this assessment. Incidental RD catches also occur in the offshore GOM shrimp fishery. Estimates of offshore incidental RD catches presented in the most recent federal assessment (Porch 2000) indicates that gulf-wide offshore shrimp fishery RD bycatch was substantial when compared to the recent LA inshore bycatch estimates. The estimated bycatch of RD from the GOM offshore shrimp fishery was just over 200,000 fish in 1998 with estimates exceeding 300,000 fish in a few earlier years. The most recent bycatch study from the GOM offshore shrimp fishery (Scott-Denton et al. 2012) indicates RD as only a small fraction of the total catch (<0.25%). However, an up-to-date time series of estimates of incidental RD catches of the GOM offshore shrimp fishery is currently unavailable and are not considered further in this assessment (see 8. *Research and Data Needs*). #### 3. Life History Information #### 3.1 Unit Stock Definition Red drum occur in estuaries and the nearshore and offshore habitat along the Atlantic and Gulf Coasts from the Gulf of Maine southward through the GOM into northern Mexico (GMFMC/GSMFC 1984). Studies using mitochondrial DNA markers (Gold and Richardson 1991, Gold et al. 1994) found significant differences in the frequencies of haplotypes of GOM and Atlantic RD, implying that GOM and Atlantic RD populations are genetically distinct. A more recent study using microsatellites to assess population structure and gene flow of RD in the northern GOM (Gold and Turner 2002) found significant genetic divergence across the northern GOM, but concluded that the genetic differences to not delineate subpopulations or stocks with fixed geographical boundaries. Approximate estimates of geographic neighborhood size from this study indicate that northern GOM adult red drum may migrate from 700 to 900 kilometers away from their natal estuaries. For purposes of this assessment, the unit stock is defined as those RD occurring in LA and adjacent federal waters. #### 3.2 Morphometrics Parameter estimates from a weight-length regression fit to LDWF FI red drum datasets (see *Appendix 4*) are used in this assessment to calculate weight from size as: $$W = 0.000248 \times (TL)^{3.1003} \quad [1]$$ where W is whole weight in pounds and TL is total length in inches. Fish with only FL measurements available are converted to TL from the following relationship reported in Porch (2000): $$TL = 1.092 \times FL - 1.01$$ [2] where fork length is in units of inches. #### 3.3 Growth Parameter estimates from a damped growth model (Porch et al. 2002) fit to LDWF FI red drum datasets (see Appendix 4) are used in this assessment to calculate RD length at age. This model provides a better fit to LDWF length at age data than the traditional three-parameter von Bertalanffy model. Red drum total length-at-age is calculated with the damped growth model as: $$TL_a = 38.0 \times (1 - e^{\beta_1 - 0.460(t + 0.321)})$$ [3] $$\beta_1 = \frac{-0.196}{0.298} (e^{-0.298t} - e^{0.321 \times 0.298})$$ where TL_a is TL-at-age in inches and years. ## 3.4 Fecundity / Maturity / Sex Ratio Red drum are group-synchronous batch spawners that spawn each fall from mid-August into October (Wilson and Neiland 1994). To realistically estimate annual fecundity, the number of eggs spawned per batch and the number of batches spawned per season must be known. For purposes of this assessment, estimates of batch fecundity and spawning frequency are calculated from the relationships reported in the latest federal assessment report (Porch 2000). Batch fecundity (BF) and spawning frequency (SF) are calculated as functions of age from: $$SF_a = (1.07 + 0.847 \times \ln(a))^2$$ [4] $BF_a = e^{(14.57 - \frac{19.5}{a^2})}$ [5] The maturity at age estimates reported in the latest federal assessment are also used for purposes of this assessment where the proportion of females estimated to be mature were 0, 0.05, 0.25, 0.62, 0.90, and 1.0 for ages 1-6 and older. Wilson and Nieland (1994) reported sex ratios for mature RD sampled from offshore schools in the northern GOM were not significantly different from 1:1. Sex ratios observed in red drum catches of the SEAMAP nearshore BLL survey conducted by LDWF are also not significantly different from 1:1. For purposes of this assessment, the sex ratio is assumed to be 1:1 across ages. The age-specific mean annual fecundity of a female fish is then estimated as the product of the batch fecundity, spawning frequency, maturity, and sex ratio at age estimates from above. #### 3.5 Natural Mortality Red drum can live to at least 39 years of age (LDWF unpublished data). For purposes of this assessment, a value of average M is calculated based on the observed longevity of the species (max. age=39 yrs, M=0.116; Hoenig 1983), but is allowed to vary with weight-at-age to calculate a declining natural mortality rate with age (Table 7). Following SEDAR 12 (SEDAR 2006), the average value of M is rescaled where the mean mortality rate over ages vulnerable to the fishery is equivalent to the average M rate as: $$M_a = M \frac{nL(a)}{\sum_{a_c}^{a_{max}} L(a)}$$ [6] where M is the average natural mortality rate over exploitable ages a, a_{max} is the oldest age-class, a_c is the first fully-exploited age-class, n is the number of exploitable ages, and L(a) is the Lorenzen curve as a function of age. The Lorenzen curve as a function of age is calculated from: $$L(a) = W_a^{-0.288}$$ [7] where -0.288 is the allometric exponent estimated for natural ecosystems (Lorenzen 1996) and W_a is weight-at-age. #### 3.6 Discard Mortality Reported short-term discard mortality estimates of RD vary with fish size, bait/hook type, and anatomical hooking location (LDWF unpublished data, Vecchio and Wenner 2007). Discard mortality estimates from these studies range from 1% up to 10%. For purposes of this assessment, a constant rate of discard mortality across time and fish size/age is assumed (5%). For modeling purposes, stock losses due to discard mortalities are incorporated directly into the catch-at-age estimates (see *5. Catch at Age Estimation*). #### 3.7 Relative Productivity and Resilience The key parameter in age-structured population dynamics models is the steepness parameter (h) of the stock-recruitment relationship. Steepness is defined as the ratio of recruitment levels when the spawning stock is reduced to 20% of its unexploited level relative to the unexploited level and determines the degree of compensation in the population (Mace and Doonan 1988). Populations with higher steepness values are more resilient to perturbation and if the spawning stock is reduced to levels where recruitment is impaired are more likely to recover sooner once overfishing has ended. Generally, this parameter is difficult to estimate due to a lack of contrast in spawning stock size (*i.e.*, stock size and corresponding recruitment information not available at both high and low levels of stock size) and is typically fixed or constrained during the model fitting process. Recent stock assessments of Red Drum in the Atlantic and in Florida waters have considered steepness values ranging from 0.99 to 0.65 (SEDAR 2015; Chagaris *et al.* 2015). Productivity is a function of growth rates, natural mortality, age of maturity, and longevity and can be a reasonable proxy for resilience. We characterize the relative productivity of GOM RD based on life-history characteristics, following SEDAR 9 (SEDAR 2006a), with a classification scheme developed at the FAO second technical consultation on the suitability of the CITES criteria for listing commercially-exploited aquatic species (FAO 2001; Table 8). Each life history characteristic (von Bertalanffy growth rate, age at maturity, longevity, and natural mortality rate) is assigned a rank (low=1, medium=2, and high=3) and then is averaged to compute an overall productivity score. In this case, the overall productivity score is 1.50 for GOM RD indicating medium to low productivity. The von Bertalanffy growth rate typically used in the above analysis is substituted with the mean growth rate across ages from the damped growth model evaluated at the midpoint of the calendar year and weighted by expected survivorship-at-age ($\bar{k} = 0.259$). #### 4. Abundance Index Development Red drum indices of abundance (IOA) are developed from the LDWF FI estuarine trammel net survey and the LDWF component of the SEAMAP FI nearshore bottom long line survey. Catch per unit effort (CPUE) for the trammel net survey is defined as the number of RD caught per trammel net sample. Trammel net samples collected during the months of January, February, and March are grouped with the previous year's October, November, and December samples for IOA development (e.g., October-March 1989-90 denoted as 1989). Catch per unit effort for the nearshore bottom long line survey is defined as the number of RD caught per 100 hook/hour. To reduce unexplained variability in catch rates unrelated to changes in abundance, each IOA was standardized using methods described below. A delta lognormal approach (Lo et al. 1992; Ingram et al. 2010) is used to standardize RD catch-rates in each year as: $$I_y = c_y p_y \quad [8]$$ where c_y are estimated annual mean CPUEs of non-zero red drum catches assumed as lognormal distributions and p_y are estimated annual mean probabilities of red drum capture assumed as binomial distributions. The lognormal and binomial means and
their standard errors are estimated with generalized linear models as least squares means and back transformed. The lognormal model considers only samples in which red drum are captured; the binomial model considers all samples. The IOA is then computed from equation [6] using the estimated least-squares means with variances calculated from: $$V(I_{\gamma}) \approx V(c_{\gamma})p_{\gamma}^{2} + c_{\gamma}^{2}V(p_{\gamma}) + 2c_{\gamma}p_{\gamma}\operatorname{Cov}(c, p) \quad [9]$$ where $Cov(c, p) \approx \rho_{c,p} [SE(c_y)SE(p_y)]$ and $\rho_{c,p}$ represents the correlation of c and p among years. Variables considered in model inclusion for the trammel net survey were year, CSA, and sampling location. Variables considered in model inclusion for the nearshore BLL survey were year and NOAA Fisheries statistical grid. All variables were categorical in both models. Because only seasonal samples are included (*i.e.*, October-March for the trammel net survey and May-September for the nearshore BLL survey), time of year was not considered in model inclusion. To determine the most appropriate models, we began the model selection process with a fully-reduced model that included only year as a fixed effect. More complex models were then developed including interactions and random effects and compared using AIC and log-likelihood values. All sub-models were estimated with the SAS generalized linear mixed modeling procedure (PROC GLIMMIX; SAS 2008). In the final trammel net IOA sub-models, year was considered a fixed effect, CSA was considered a random block effect, and sampling locations within CSAs were considered random subsampling block effects. In the final nearshore BLL IOA submodels, year was considered a fixed effect and NOAA Fisheries statistical grids were considered random block effects. Sample sizes, nominal proportion of positive samples, nominal CPUE of positive samples, standardized indices of abundance, and coefficients of variation of the standardized indices are presented (Tables 9 and 10). ## 5. Catch at Age Estimation Red drum spawn across a narrow window from mid-August into October (Wilson and Neiland 1994) with October 1st typically assumed as the biological birthdate. However, for purposes of this assessment, RD ages are assigned based on the calendar year by assigning a January 1st birthday, where RD spawned the previous year become age-1 on January 1st and remain age-1 until the beginning of the following year. Seasonal age-length-keys (ALKs) are developed to estimate the annual age composition of recreational red drum landings, inshore commercial landings, and survey catches as described below. The age composition samples available from the offshore commercial fishery (1987-1988) and the nearshore BLL survey (2018-2020) are used to represent the annual age composition of the offshore landings and survey catches for those years with available age samples. ## 5.1 Fishery <u>1982-2001:</u> Seasonal s probabilities of age a given length l for recreational and inshore commercial RD landings are computed from: $$P(a|l)_s = \frac{P(l|a)_s}{\sum_a P(l|a)_s} \quad [10]$$ where the seasonal probabilities of length given age are estimated from normal probability densities as: $$P(l|a)_{s} = \frac{1}{\sigma_{sa}\sqrt{2\pi}} \int_{l-d}^{l+d} exp\left[-\frac{(l-l_{sa})^{2}}{2\sigma_{sa}^{2}}\right] dl \quad [11]$$ where length bins are 1 inch TL intervals with midpoint l, maximum l+d, and minimum l-d lengths. Seasonal mean total length-at-age l_{sa} are estimated from Equation [3]. Seasons represent January-April (season 1), May-August (season 2), and September-December (season 3). The standard deviation of seasonal mean length-at-age is calculated from $\sigma_{sa} = l_{sa}CV_l$, where the coefficient of variation in length-at-age is assumed normally distributed and changes linearly with age from a CV of 0.203 for age-0 fish to a CV of 0.0754 for age-5 fish and a uniform CV of 0.0499 for fish age-6 and older (see *Appendix 4*). To approximate changes in growth and vulnerability to the fishery through the year, mean l_{sa} is calculated at the mid-point of each season of the calendar/model year. The resulting $P(a|l)_s$ matrices (Table 11) are used to assign ages to recreational fishery RD landings from 1982-2001 and for instances discussed below where minimum sample size requirements are not met. The season 2 (May-August) ALK is used to assign ages to the LA inshore commercial RD landings. <u>2002-2021:</u> Annual seasonal probabilities of age given length for recreational fishery landings are computed from: $$P(a|l)_{sy} = \frac{n_{lasy}}{\sum_{a} n_{lasy}} \quad [12]$$ where n_{lasy} are annual seasonal recreational RD sample sizes occurring in each length/age bin. When row samples sizes ($\sum_a n_{lasy}$) are <10, the P(a|l) for that total length interval is estimated with Equation [10]. Resulting $P(a|l)_{sy}$ matrices are presented (Table 12). Annual recreational catch-at-age from 1982-2021 is then calculated as: $$C_{ay} = \sum_{ls} C_{lsy} P(a|l)_{sy} \quad [13]$$ where C_{lsy} are annual seasonal catches-at-size in TL, and $P(a|l)_{sy}$ are taken from Equations [10 or 12]. Recreational discard mortalities are incorporated directly into the recreational catch-at-age by applying a 5% discard mortality rate to the estimated live releases-at-size and combining them with the harvest-at-size estimates. For modeling purposes, catches≥age-10 are summed into a plus group. Resulting annual recreational catch-at-age, commercial catch-at-age (as proportions at age), and corresponding mean weights-at-age are presented (Tables 13-15). Annual recreational mean weights-at-age are calculated from the annual recreational size/age composition information. Inshore and offshore commercial mean weights are calculated from the available commercial size/age composition information. #### 5.2 Survey Probabilities of age given length for RD catches of the LDWF estuarine trammel net survey (1985-2021) and the LDWF component of the SEAMAP nearshore BLL survey (2015-2017 only) are computed from equation [10]. Mean total length-at-age is estimated from equation [3]. The standard deviation in length-at-age is calculated as described above for the fishery. To approximate trammel net survey timing (i.e., a January 1st midpoint), mean total length-at-age is calculated at the beginning of the calendar year. To approximate the nearshore BLL survey timing, mean total length-at-age is calculated at the midpoint of the calendar/model year. The resulting P(l|a) matrix for RD catches of the estuarine trammel net survey is presented (Table 18). The resulting P(l|a) matrix for RD catches of the nearshore BLL survey is equivalent to the season 2 ALK in Table 11. Annual survey catch-at-age is also taken from Equation [13] with annual survey catch-at-size substituted (Tables 16 and 17). Resulting annual age compositions of RD catches of the LDWF marine trammel net survey and the LDWF component of the nearshore SEAMAP BLL survey are presented along with the age compositions for the years age samples were available (Tables 19 and 20). Also presented are the age compositions from the MARFIN age samples that are used to represent the NOAA Fisheries mark-recapture estimates of absolute abundance (Table 21). ## 6. Assessment Model The Age-Structured Assessment Program (ASAP3 Version 3.0.17; NOAA Fisheries Toolbox) is used in this assessment to describe the dynamics of RD occurring in LA and adjacent federal waters. ASAP is a statistical catch-at-age model that allows internal estimation of a Beverton-Holt stock recruitment relationship and MSY-related reference points. Minimum data requirements are fishery catch-at-age, corresponding mean weights-at-age, and an index of abundance. ASAP projects abundance-at-age from estimates of abundance in the initial year of the time-series and recruitment estimates in subsequent years. The model is fit to the data with a maximum likelihood fitting criterion. An overview of the basic model configuration, equations, and their estimation, as applied in this assessment, are provided below. Specific details and full capabilities of ASAP can be found in the technical documentation (ASAP3; NOAA Fisheries Toolbox). #### 6.1 Model Configuration For purposes of this assessment, the model is configured with annual time-steps (1982-2021) and a calendar year time-frame. ## **Mortality** Fishing mortality is assumed separable by age α year y and fishery f as: $$F_{ayf} = v_{af} Fmult_{yf}$$ [14] where v_{af} are age and fishery-specific selectivities and $Fmult_{yf}$ are annual fishery-specific apical fishing mortality rates. Apical fishing mortalities are estimated in the initial year and as deviations from the initial estimates in subsequent years. Fishery-specific selectivities-at-age are modeled with single (commercial offshore) and double logistic functions (inshore commercial and recreational) as: $$v_{af} = \left(\frac{1}{1 + e^{-(a - \alpha_f)/\beta_f}}\right) \quad [15a]$$ $$v_{af} = \left(\frac{1}{1+e^{-(a-\alpha_f)/\beta_f}}\right) \left(1 - \frac{1}{1+e^{-(a-\alpha_2_f)/\beta_2_f}}\right)$$ [15b] Total mortality for each age and year is estimated from the age-specific natural mortality rates M_a and estimated annual fishery-specific fishing mortalities as: $$Z_{ay} = M_a + \sum_f F_{ayf} \quad [16]$$ For reporting purposes, annual age-specific fishing mortalities are averaged by weighting by estimated population numbers at age N_{ay} as: $$F_y = \frac{\sum_a F_{ay} N_{ay}}{\sum_a N_{ay}} \quad [17]$$ Annual escapement rates of juvenile fish (biological ages 0-4) are calculated from the calendar age F rates as: $$E_y = e^{-(F_{1y} + F_{2y} + F_{3y} + F_{4y} + 0.75F_{5y})}$$ [18a] Annual fishing mortality rates of adult fish (biological ages 5-10+) are calculated from the calendar age F rates as: $$AF_{y} = 1 - e^{-(0.25F_{5y} + F_{6y} + F_{7y} + F_{8y} + F_{9y} + F_{10y})}$$ [18b] ##
Population Abundance Abundance in the initial year of the time series and recruitment in subsequent years are estimated and used to forward calculate the remaining numbers at age from the age and year-specific total mortality rates as: $$N_{ay} = N_{a-1,y-1}e^{-Z_{a-1,y-1}}$$ [19] Numbers in the plus group A are calculated from: $$N_{Ay} = N_{A-1,y-1}e^{-Z_{A-1,y-1}} + N_{A,y-1}e^{-Z_{A,y-1}}$$ [20] #### Stock Recruitment Expected recruitment is calculated from the Beverton-Holt stock recruitment relationship, reparameterized by Mace and Doonan (1988), with annual lognormal deviations as: $$\hat{R}_{y+1} = \frac{\alpha SSF_y}{\beta + SSF_y} + e^{\delta_{y+1}} \quad [21]$$ $$\alpha = \frac{4\tau(SSF_0/SPR_0)}{5\tau - 1}$$ and $\beta = \frac{SSF_0(1 - \tau)}{5\tau - 1}$ where SSF_0 is unexploited female spawning stock fecundity, SPR_0 is unexploited female spawning stock fecundity per recruit, τ is steepness, and $e^{\delta_{y+1}}$ are the annual lognormal recruitment deviations. ## Spawning Stock Biomass Female spawning stock fecundity in each year is calculated from: $$SSF_y = \sum_{i=1}^{A} N_{ay} \Phi_{ay} e^{-Z_{ay}(0.75)}$$ [22] where Φ_{ay} are annual mean per capita fecundity-at-age of mature females, and $e^{-Z_{ay}(0.75)}$ is the proportion of the population surviving prior to spawning on October 1st. ## **Expected Catch** Expected fishery catches are estimated from the Baranov catch equation as: $$\hat{C}_{ayf} = N_{ay} F_{ayf} \frac{\left(1 - e^{-Z_{ay}}\right)}{Z_{ay}} \quad [23]$$ Expected age composition of fishery catches are then calculated from $\frac{\hat{c}_{ayf}}{\sum_a \hat{c}_{ayf}}$. Expected fishery yields are computed as $\sum_a \hat{c}_{ayf} \overline{W}_{ayf}$, where \overline{W}_{ayf} are observed mean catch weights. ## Survey Catch-rates Expected survey catch-rates are computed from: $$\hat{I}_{ay} = q \sum_{a} N_{ay} (1 - e^{-Z_{ay}(0.0)}) v_a$$ [24] where v_a are survey selectivities, q is the estimated catchability coefficient, and $1 - e^{-Z_{ay}(0.0)}$ is the proportion of the total mortality occurring prior to the time of the trammel net survey (January 1st midpoint). Survey timing for the nearshore BLL survey and NOAA Fisheries mark-recapture estimates was set to the middle of the year. Survey selectivities are modeled with a double logistic function (trammel net survey; Equation 15b) and single logistic functions (BLL survey and NOAA Fisheries mark-recapture estimates; Equation 15a). Expected survey age composition is then calculated as $\frac{\hat{l}_{ay}}{\sum_a \hat{l}_{ay}}$. ## Parameter Estimation The number of parameters estimated is dependent on the length of the time-series, number of fleets modeled, number of selectivity blocks modeled, and number of abundance indices modeled. Parameters are estimated in log-space and then back transformed. In this assessment, 235 parameters are estimated: - 1. 22 selectivity parameters (1 block for the inshore commercial fishery, 1 block for the offshore commercial fishery that is also shared by the menhaden reduction bycatch fleet, 2 blocks for the recreational fishery, and 1 block for each survey) - 2. 160 apical fishing mortality rates (F_{mult} in the initial year and 39 deviations in subsequent years for 4 fleets) - 3. 40 recruitment deviations (1982-2021) - 4. 9 initial population abundance deviations (age-2 through 10-plus) - 5. 3 catchability coefficients (1 per survey, and 1 for the NOAA Fisheries mark-recapture estimates that is constrained to 1.0 to represent absolute abundance) - 6. 1 stock-recruitment parameter (SSB_0 ; the steepness parameter is fixed at 1.0 for the base run). The model is fit to the data by minimizing the objective function: $$-ln(L) = \sum_{i} \lambda_{i}(-ln L_{i}) + \sum_{i}(-ln L_{i})$$ [25] where -ln(L) is the entire negative log-likelihood, lnL_i are log-likelihoods of lognormal estimations, λ_i are user-defined weights applied to lognormal estimations, and lnL_j are log-likelihoods of multinomial estimations. Negative log-likelihoods with assumed lognormal error are derived (ignoring constants) as: $$-ln(L_i) = 0.5 \sum_{i} \frac{[ln(obs_i) - ln(pred_i)]^2}{\sigma^2} \quad [26]$$ where obs_i and $pred_i$ are observed and predicted values; standard deviations σ are user-defined CVs as $\sqrt{ln(CV^2+1)}$. Negative log-likelihoods with assumed multinomial error are derived (ignoring constants) as: $$-ln(L_i) = -ESS\sum_{i=1}^{A} p_i ln(\hat{p}_i) \quad [27]$$ where p_i and \hat{p}_i are observed and predicted age composition. Effective sample-sizes *ESS* are used to create the expected numbers \hat{n}_a in each age bin and act as multinomial weighting factors. ## 6.2 Model Assumptions/Inputs Model assumptions include: 1) the unit stock is adequately defined and closed to migration, 2) observations are unbiased, 3) errors are independent and their structures are adequately specified, 4) fishery and survey vulnerabilities are adequately specified, 5) abundance indices are proportional to absolute abundance, and 6) fecundity, growth and sex ratio-at-age do not vary significantly with time. Lognormal error is assumed for catches, abundance indices, the stock-recruitment relationship, apical fishing mortality, selectivity parameters, initial abundance deviations, and catchability. Multinomial error is assumed for fishery and survey age compositions. A base model was defined with an age-10 plus group, the steepness parameter fixed at 1.0, two commercial fishery selectivity blocks, two recreational selectivity blocks, a discard mortality rate of 5%, the 1997 absolute abundance estimate from the NOAA Fisheries mark-recapture experiments with a single tagged fish recaptured in the western study area, and input levels of error and weighting factors as described below. For the commercial fleets, a single selectivity block is modeled per fishery (inshore and offshore). The offshore commercial selectivity block is also used to represent the selectivity of the menhaden reduction fishery bycatch (along with the available age composition and mean weight information). Within the recreational fleet, two selectivity blocks are modeled that correspond to the following time-periods of consistent regulation: 1) 1982-1987 (no recreational size regulations implemented) and 2) 1988-2021 (current recreational slot limit implemented). Input levels of error for commercial fishery landings were specified with CV's of 0.20 for each year of the time-series. Input levels of error for recreational fishery landings estimates were specified with CV's of 0.05 for each year of the time-series under the assumption that recreational landings estimates are known with less error than the commercial landings. Input levels of error for survey catch-rates were specified with CV's estimated from each IOA standardization (Tables 9 and 10). Annual recruitment deviations were specified with CV's of 0.4 for all years of the time-series. The catchability coefficient of the NOAA Fisheries mark-recapture absolute abundance estimates was estimated, but constrained to be 1.0 in the assessment model with a CV of 0.0001. Ideally, the catchability coefficient of an absolute abundance estimate would be fixed at 1.0 (by setting its phase to a negative value) rather than constrained to be 1.0, but the current configuration of the ASAP graphical user interface does not allow each surveys catchability phase to be adjusted separately. All selectivity parameters are constrained to initial guesses with a CV of 1.0 to improve model stability. To allow reasonable (non-zero) estimates of stock numbers-at-age in the first year of the time series, the estimated deviations of initial stock numbers of age-2 through 10+ fish are also constrained with a CV of 1.0. Lognormal components included in the objective function were equally weighted (all lambdas=1). Input effective sample sizes (ESS) for estimation of fishery and survey age compositions were specified with the observed annual sample sizes for the years where annual ALKs and annual age composition samples were available, but are capped at ESS=200 to prevent overfitting. For years where annual ALKs or annual age composition samples were not available and ages were assigned from size, the effective sample sizes were down-weighted to ESS=50. #### 6.3 Model Results Objective function components, weighting factors, and likelihood values of the base model are summarized in Table 22. ## Model Fit The base model provides an overall reasonable fit to the data. Fits to the commercial landings, recreational landings, and menhaden reduction fishery bycatch match the observations well (Figure 5). Model estimated catch-rates of the LDWF component of the SEAMAP BLL survey provide reasonable fits to the data (Figure 6). Model estimated catch-rates of the trammel net survey also provide reasonable fits to the data given the relatively large CV's of the time series, but are generally overestimated in the initial years of the time series and underestimated in the more recent years (Figure 6). Model fit of the NOAA Fisheries mark-recapture absolute abundance estimates are also reasonable given the large input CV of the 1997 estimate (CV=0.682), but are underestimated by approximately 1 million fish (Figure 6). Model estimated fishery and survey age compositions provide adequate fits to the input age proportions (Figures 7-12) with noticeably better fits for the years annual recreational ALKs were available, with a few exceptions. The model overestimates the input trammel net age compositions of age-2 and age-3 fish beginning in 2018, which are some of the lowest observations of the time series examined. Model fits to the input trammel net age compositions in recent years consistently underestimate the age-10+ group. ## Selectivities Estimated fishery and survey selectivities are presented in Figure 13. Fishery estimates indicate full-vulnerability to the inshore commercial
fishery at age-3 and to the offshore commercial fishery at age-4. Recreational selectivities for each regulation block indicates full vulnerability to the fishery at age-2. The estimated recreational selectively of age-1 fish was reduced by approximately 86% after the 1988 size regulations were implemented. Survey estimates indicate full vulnerability to the FI trammel net survey gear at age-2 and to the nearshore BLL survey at age-10+. Selectivity estimates of the NOAA Fisheries mark-recapture estimates also indicate full vulnerability to the sampling gear at age-10+. ## Abundance, Recruitment, and Spawning Stock Total stock size and abundance—at-age estimates are presented in Table 23. Stock size has varied considerably over the time-series examined. Stock size decreased from 13.8 million fish estimated in 1982 to 10.1 million fish estimated in 1989. After 1989, stock abundance increased to a peak of 23.0 million fish in 1999. Since 1999, stock size has generally declined. In the most recent decade, stock size has decreased from the 18.3 million fish estimated in 2012 to the lowest stock size of the modeled time series estimated in 2021 (8.7 million fish). Estimates of age-1 recruitment are presented in Table 23 and Figure 14. Recruitment generally declined from the initial years of the time series from 3.5 million age-1 fish estimated in 1982 to a low of 1.7 million age-1 fish estimated in 1989. Following 1989, recruitment increased to a peak of 7.6 million age-1 fish estimated in 1994. Since 1994, recruitment has generally declined. In the most recent decade, age-1 recruitment has decreased from the 4.5 million fish estimated in 2012 to some of the lowest recruitment estimates of the modeled time series estimated in 2019-2021 (1.4, 1.4, and 1.7 million fish respectively). The average recruitment (geometric mean) of the time-series is 3.8 million age-1 fish. The average recruitment of the most recent decade of the time-series is 2.5 million age-1 fish. Female spawning stock fecundity (SSF) estimates are presented in Figure 15. Estimates decreased from over 60 trillion eggs in the first years of the time-series to a minimum of 36.6 trillion eggs estimated in 1991. After 1991, SSF increased to a peak of 78.6 trillion eggs estimated in 2004. Since 2004, SSF has decreased to 50.7 trillion eggs estimated in 2021. ## Fishing Mortality Estimated fishing mortality rates are presented in Table 24 (total apical, average N-weighted, age-specific, juvenile escapement, and adult F rates) and Figure 16 (average F rates) and Figure 17 (escapement rates). Average fishing mortality rates have varied over the time-series with a steep increase in the earlier years up to peaks of 0.29 and 0.28 estimated in 1986 and 1987. After 1987, average fishing mortality rates declined steeply after RD harvest in the EEZ was prohibited and then became relatively stable in the years after inshore entanglement nets regulations were enacted. In the most recent decade, average fishing mortality rates increased from 0.10 estimated in 2012 to another peak of 0.23 estimated in 2018. Since 2018, average fishing mortality estimates have declined. The 2021estimate of average F is 0.11. Escapement rates of juvenile fish calculated from Equation [18a] (i.e., the proportion of juvenile fish that survive the inshore fishery to become adults) have also varied through time, where the lowest escapement rates occurred in 1986 and 1987 (8.6 and 9.9%) before increasing steeply in 1988 to 66.4%. Since 1988, escapement has generally declined. In the most recent decade, escapement estimates have declined overall from an estimate of 38.2% in 2012 to an estimate of 22.2% in 2021 with lows of 17.4 and 17.1% escapement estimated in 2018 and 2020. Fishing mortality rates of adult fish calculated from Equation [18b] (i.e., the proportion of adult fish that die due to fishing) follow a trend similar to average F and escapement rates, where the highest adult F (46.8%) occurred in 1986 before declining to a relatively stable level between 5 and 8% after harvest in the EEZ was prohibited. Beginning in 2010, adult F rates increased above 10% which corresponds with the decline observed in stock size and female spawning stock fecundity in the most recent decade. The 2021 estimate of adult F is 14.7%. ## Stock-Recruitment No discernable relationship is observed between female SSF and subsequent age-1 recruitment estimates (Figure 18). The steepness parameter was fixed at 1.0 in the ASAP base model run. The estimated unexploited SSF and age-1 recruitment was 133 trillion eggs and 3.80 million age-1 fish. Alternate runs with steepness values fixed at 0.9, 0.8, and 0.7 are discussed in the *Model Diagnostics* Section below. ## Parameter Uncertainty In the ASAP base model, 235 parameters are estimated. Asymptotic standard errors of the recruitment, spawning stock fecundity, and fishing mortality (average F and escapement rates) time-series are presented (Figures 14-17). ## 6.4 Management Benchmarks Overfishing and overfished limits should be defined for exploitable stocks. The implication is that when spawning biomass falls below a specified limit, there is an unacceptable risk that recruitment will be reduced to undesirable levels. Management actions are needed to avoid approaching this limit and to recover the stock if biomass falls below the limit. Management thresholds have been established for GOM red drum in the Gulf of Mexico Fishery Management Council (GMFMC) Red Drum Fishery Management Plan (FMP). Amendment 2 of the FMP, implemented in 1988, designates a 20% spawning potential ratio (SPR) limit and requests the GOM States to enact rules to achieve that standard by providing 30% escapement of juvenile fish to offshore waters (GMFMC 1988). The state of Louisiana has endorsed that standard, as it was included in Act 889 of the 1988 Regular Legislative Session. A provision of Act 889, which was to become effective September 1, 1991, authorized the Wildlife and Fisheries Commission to set a quota for commercial harvest of red drum, based on 30% escapement to offshore waters. This provision never became effective, since the section was repealed by Act 157 of the 1991 Regular Legislative Session. However, it does seem to have established legislative intent to endorse the conservation standard recommended by the GMFMC. The method for calculating equilibrium reference points that correspond to the 20% SPR_{limit} are presented below. When the stock is in equilibrium, equation [22] can be solved, excluding the year index, for any given exploitation rate as: $$\frac{SSF}{R}(F) = \sum_{i=1}^{A} N_a \Phi_a \, e^{-Z_a(0.75)} \, [28]$$ where total mortality at age Z_a is computed as $M_a + v_a \times Fmult$; vulnerability at age v_a is taken by rescaling the current F-at-age estimate (geometric mean 2019-2021) to the maximum. Per recruit abundance-at-age is estimated as $N_a = S_a$, where survivorship at age is calculated recursively from $S_a = S_{a-1}e^{-Z_a}$, $S_1 = 1$. Per recruit catch-at-age is then calculated from the Baranov catch equation [23], excluding the year index. Yield per recruit (Y/R) is then taken as $\sum_a C_a \overline{W}_a$ where \overline{W}_a are current mean fishery weights at age (arithmetic mean 2019-2021). Fishing mortality is averaged by weighting by survivorship at age. Equilibrium spawning stock fecundity SSF_{eq} is calculated by substituting SSF/R estimated from equation [28] into the Beverton-Holt stock recruitment relationship as $\alpha \times SSF/R - \beta$. Equilibrium recruitment R_{eq} and yield Y_{eq} are then taken as $SSF_{eq}/(SSF/R)$ and $Y/R \times R_{eq}$. Equilibrium SPR (e.g. SPR_{limit}) is then computed as the ratio of SSF/R when F>0 to SSF/R when F=0. Equilibrium escapement rates are calculated from equation [18a] excluding the year index with equilibrium F-at-age calculated as $v_a \times Fmult$ where v_a is the current (2019-2021) vulnerability at age estimate. The equilibrium spawning stock fecundity, escapement rate, and average fishing morality rate that lead to the 20% SPR_{limit} (SSF_{limit} , E_{limit}) are then calculated. The established limits of fishing are presented in Figure 19 relative to each time-series. Limit reference points are also presented in Table 25. Current estimates are taken as the geometric mean of the 2019-2021 estimates. Also presented are a plot of the stock-recruitment data, equilibrium recruitment, and diagonals from the origin intersecting R_{eq} at the SSF_{limit}, and the minimum and maximum SSF estimates of the time-series, corresponding with a SPR_{limit} of 20%, and a minimum and maximum SPR of 27.4% and 58.7% (Figure 20). #### 6.5 Model Diagnostics #### Sensitivity Analysis In addition to the base model run, a series of sensitivity runs were used to explore uncertainty in the base model's configuration. The ASAP base model was run with steepness fixed at 1.0. Alternate runs were conducted examining reference point estimates with steepness fixed at 0.9, 0.8, and 0.7 (Models 1-3). Additional sensitivity runs were conducted by separately up-weighting the contributions of fishery yield and the IOA components within the base models objective function (lambdas increased from 1 to 10; Models 4 and 5). An additional sensitivity run was conducted where all input ESS were reduced by half (Model 6) Another sensitivity run was conducted by increasing the discard mortality rate from 5% to 8% (Model 7). An additional sensitivity run was conducted where the fishery ALK developed from the damped growth model was used to assign ages to the entire time-series of recreational fishery landings (Model 8). Another sensitivity run was conducted that only included the LA offshore commercial landings rather than the GOM offshore commercial landings (Model 9). An additional sensitivity run was conducted with spawning stock biomass estimated rather than spawning stock fecundity (Model
10). Sensitivity runs were also conducted where the 1987 and 1997 NOAA Fisheries absolute abundance estimates are excluded from the assessment model (Model 11) and where only the 1997 NOAA Fisheries absolute abundance estimate is excluded (Model 12). Final sensitivity runs were conducted where the base natural mortality rate was increased 20% (Model 13) and decreased 20% (Model 14). Results of each sensitivity run relative to the limit reference points are presented in Table 26. Current estimates of female SSF, average F, and escapement rates are taken as the geometric mean of the 2019-2021 estimates. Estimates from all sensitivity runs with the exception of Model 11 indicate the stock is currently above the SSF_{limit}. Model 5 is the only run where the fishery is currently not overfishing in terms of escapement rates (>30%). Also presented are estimates of maximum sustainable yield (MSY) and associated reference points for those sensitivity runs with the steepness parameter not fixed at 1 (Models 1-3; Table 27). Results of each run indicate that the fishery is currently overfishing in terms of escapement rates (<30%), where the inverse of ratios of current E to E_{MSY} are above 1. Spawning stock fecundity estimates from each run indicate the stock is currently above SSF_{MSY}. ## Retrospective Analysis A retrospective analysis was conducted by sequentially truncating the base model by a year (terminal years 2016-2021; Figure 21). Retrospective estimates of age-1 recruits and the average fishing mortality rate differ marginally from the base run where recruitment estimates generally tend to increase and fishing mortality rate estimates tend to decrease as years are added to the model. Retrospective estimates of spawning stock fecundity reveal a pattern where estimates in the initial year of the time series tend to decrease slightly as additional years are added to the model while estimates in the terminal year increase as additional years are added. The terminal retrospective pattern in female SSF can be explained by the addition of the LDWF component of the SEAMAP BLL survey that began in 2015. As more years of the BLL survey and corresponding age compositions (primarily age-10+ fish) are included in the modeled time series, the model estimates of age-10+ fish and female SSF increase as more information of the adult offshore population becomes available to the assessment model. When the BLL survey is not used as an input of the assessment model, the scale of the retrospective pattern in female SSF and age-10+ stock numbers is greatly reduced. ## 7. Stock Status The history of the LA red drum stock relative to E/E_{limit} and SSB/SSB_{limit} are presented in Figure 22. Escapement rate estimates below E_{limit} (1/ (E/E_{limit})>1.0) are defined as overfishing; spawning stock fecundity estimates below SSB_{limit} (SSB/SSB_{limit} < 1.0) are defined as the overfished condition. ## **Overfishing Status** The current estimate of $1/(E/E_{limit})$ is >1.0 (1.49), indicating the stock is currently undergoing overfishing. The current assessment model also indicates that overfishing occurred in earlier years of the time-series. The current escapement rate estimate is 20.1%. #### Overfished Status The current estimate of SSB/SSB_{limit} is >1.0 (2.00), indicating the stock is not currently overfished. The current SPR estimate is 40.1%. #### 8. Research and Data Needs As with any analysis, the accuracy of this assessment is dependent on the accuracy of the information of which it is based. Below we list additional recommendations to improve future LA stock assessments of red drum. Continuing the SEAMAP nearshore bottom longline survey and corresponding age composition sampling are critical to estimating stock status since this survey supplies the only current estimates of adult RD abundance. Updated estimates of offshore abundance with reasonable precision would provide more certainty in estimation of stock status in future assessments. Only limited age data are available from the LDWF estuarine trammel net survey. Ages of survey catches in this assessment were assigned from size with a growth function. Continuing the age composition sampling from the survey would allow a more accurate representation of survey age composition in future assessments. Development of a new fishery independent survey that better tracks red drum recruitment through time (full selection to survey gear at age-1) would provide better certainty in age-1 relative abundance estimates in future stock assessments. Estimates of red drum batch fecundity, spawning frequency, and maturity used in this assessment were developed in 1996. Updated estimates of red drum batch fecundity, spawning frequency, and maturity at age/size are needed. Investigations of the habitat utilization of younger adult red drum (5-10 yrs), which are presumed to have escaped the inshore fishery and migrated to the offshore adult stock in the EEZ, are needed to determine what proportion of red drum truly escape the inshore fishery, as well as the efficacy of the current juvenile escapement rate based management policy. Incidental catches of RD from the offshore GOM shrimp fishery were not considered in this assessment. Some previously reported estimates of incidental RD catches in the offshore shrimp fishery indicated a relatively large bycatch when compared to estimates of RD incidental catches of the LA inshore shrimp fishery. Development of a current time series of offshore shrimp fishery RD bycatch would allow for a better understanding of the current magnitude of offshore shrimp fishery bycatch relative to the directed fisheries. Factors that influence year-class strength of red drum are poorly understood. Investigation of these factors, including inter-annual variation in seasonal factors (seasonal salinities, winter severity, food availability, etc.) and the influence of environmental perturbations such as the Deepwater Horizon oil spill, could elucidate causes of inter-annual variation in abundance, as well as the species stock-recruitment relationship. With the recent trend toward ecosystem-based assessment models (Mace 2000; NMFS 2001), more data is needed linking red drum population dynamics to environmental conditions. The addition of meteorological and physical oceanographic data coupled with food web data may lead to a better understanding of the RD stock and its habitat. Fishery-dependent data alone is not a reliable source of information to assess status of a fish stock. Consistent fishery-dependent and fishery-independent data sources, in a comprehensive monitoring plan, are essential to understanding the status of fishery. Present monitoring programs should be assessed for adequacy with respect to their ability to evaluate stock status, and modified if deemed necessary. #### 9. References - Adkins, G., V. Guillory, and M. Bourgeois. 1990. A creel survey of Louisiana recreational saltwater anglers. Louisiana Department of Wildlife and Fisheries, Technical Bulletin Number 41:1-58. - Beckman, D.W. 1989. Age and Growth of Red Drum, *Sciaenops Ocellatus*, and Black Drum, *Pogonias Cromis*, in the Northern Gulf of Mexico. LSU Historical Dissertations and Theses. 4699. https://digitalcommons.lsu.edu/gradschool_disstheses/4699 - Blanchet, H. 2005. 2005 Louisiana's Red Drum Escapement Rate Update. Louisiana Department of Wildlife and Fisheries, Office of Fisheries, Baton Rouge, LA. - Cagle, P., and J. West. 2020. Evaluation of Commercial Shrimp Fishery Bycatch in Louisiana Waters. Louisiana Department of Wildlife and Fisheries, Office of Fisheries, Baton Rouge, LA. - Chagaris, D., Mahmoudi, B., & Murphy, M. 2015. The 2015 Stock Assessment of Red Drum, Sciaenops ocellatus, in Florida. - Daily Picayune. 1892. Gulf Fisheries. Interesting Results of the Investigation by the United States Fish Commission. Vol LVI, No. 132. Page 7. New Orleans, LA - Food and Agriculture Organization (FAO). 2001. Second Technical Consultation on the Suitability of the CITES Criteria for Listing Commercially-exploited Aquatic Species: A background analysis and framework for evaluating the status of commercially-exploited aquatic species in a CITES context. Windhoek, Namibia, 22-25 October 2001. Available: http://www.fao.org/docrep/MEETING/003/Y1455E.htm - GMFMC and GSMFC. 1984. Fishery profile of red drum. Gulf of Mexico Fishery Management Council and Gulf States Marine Fisheries Commission, Tampa, FL and Ocean Springs, MS. - GMFMC. 1988. Amendment number 2 and environmental assessment, and regulatory impact review, and initial regulatory flexibility analysis to the fishery management plan of the red drum fishery of the Gulf of Mexico. Gulf of Mexico Fishery Management Council, Tampa, FL. - GMFMC. 2021. Status Determination Criteria and Optimum Yield for Reef Fish and Red Drum. Final Amendment 48 to the Fishery Management Plan for Reef Fish Resources of the Gulf of Mexico and Amendment 5 to the Fishery Management Plan for the Red Drum Fishery of the Gulf of Mexico Including Environmental Assessment and Fishery Impact Statement. Gulf of Mexico Fishery Management Council, Tampa, FL. - Gold, J.R., and L. R. Richardson. 1991. Genetic studies in marine fishes. IV. An analysis of population structure in the red drum (*Sciaenops ocellatus*) using mitochondrial DNA. Fish. Res. 12: 213-241. - Gold, J.R., King, T. L., Richardson, L.R., Bohlmeyer, D. A., and Matlock, G.C. 1994. Allozyme differentiation within and between red drum (*Sciaenops ocellatus*) from the Gulf of Mexico and Atlantic Ocean. J. Fish Biol. 44: 567-590. - Gold, J.R., and T. F. Turner. 2002. Population structure of red drum (Sciaenops ocellatus) in the northern Gulf of Mexico, as inferred from variation in nuclear-encoded microsatellites. Marine Biology (2002) 140: 249–265. - Guillory, V., and G. Hutton. 1990. A survey of the marine recreational fishery of lower Barataria Bay, Louisiana, 1975-1977. Pages 59-73 In:
Louisiana Department of Wildlife and Fisheries Technical Bulletin Number 41. - Hoenig, J. M. 1983. Empirical use of longevity data to estimate mortality rates, Fishery Bulletin 82: 899-903. - Hoese, H. D., D. W. Beckman, R. H. Blanchet, D. Drullinger, and D. L. Nieland. 1991. A biological and fisheries profile of Louisiana red drum *Sciaenops ocellatus*. LDWF Fishery Management Plan Series. Number 4 Part 1 (Final Draft) - Ingram, G.W., Jr., W.J. Richards, J.T. Lamkin, and B. Muhling. 2010. Annual indices of Atlantic bluefin tuna (*Thunnus thynnus*) larvae in the Gulf of Mexico developed using deltalognormal and multivariate models. Aquat. Living Resour. 23:35–47. - Kelso, W.E., B.D. Rogers, T.A. Bahel, D.A. Rutherford, and D.R. Rogers. 1994. A 1993 survey of Louisiana saltwater anglers. School of Forestry, Wildlife, and Fisheries, Louisiana State University Agricultural Center, Louisiana Agricultural Experiment Station, Baton Rouge, Louisiana. 93p. - LDWF. 1997. 1997 Report on the Status of Red Drum. Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA. - LDWF. 2018. Marine Fisheries Section Independent Sampling Activities Field Manual. Louisiana Department of Wildlife and Fisheries, Office of Fisheries, Baton Rouge, LA. - LDWF. 2020. Estimates of Spotted Seatrout and Red Drum Bycatch in the Louisiana Menhaden Reduction Fishery. Louisiana Department of Wildlife and Fisheries, Office of Fisheries, Baton Rouge, LA. - Lo, N.C.H., Jacobson, L.D., and Squire, J.L. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Canadian Journal of Fisheries and Aquatic Science. 49:2515–2526. - Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. Journal of Fish Biology. 49:627-642. - Mace, P.M. [ed.]. 2000. Incorporating ecosystem considerations into stock assessments and management advice. Proceedings of the 6th NMFS National Stock Assessment Workshop (NSAW). NOAA Technical Memorandum NMFS-F/SPO-46. 78 pp. - Mace, P.M., and Doonan, I.J. 1988. A generalized bioeconomic simulation model for fish population dynamics. Technical Report 88, New Zealand Fisheries Assessment Resource Document. - Meise, J.A. 1930. Gifts of nature yield millions; Forest products, oil, gas, minerals, game, fish add to wealth. New Orleans States Newspaper. January 3. page 9. - Mitchell, K. and T. Henwood. Red Drum (*Sciaenops ocellatus*) Tag/Recapture Experiment (1997-1998). Mississippi Laboratories, NMFS, 15 p. - Nichols, S. 1988. An estimate of the size of the red drum spawning stock using mark/recapture. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Center, Pascagoula Laboratories, Pascagoula, MS., March 1988. 24 p. - NMFS. 2001. Marine Fisheries Stock Assessment Improvement Plan. Report of the National Marine Fisheries Service National Task Force for Improving Fish Stock Assessments. U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-56, 69 p., 25 appendices. - NMFS. 2019. Annual commercial landings statistics. National Marine Fisheries Service, Fisheries Statistics and Economics Division. Available: http://www.st.nmfs.noaa.gov/commercial-fisheries/index [accessed 2/2021]. - NOAA Fisheries Toolbox. 2013. Age Structured Assessment Program (ASAP), Version 3.0.17. Available: https://www.nefsc.noaa.gov/nft/. - Norris, T. 1865. The American angler's book: embracing the natural history of sporting fish, and the art of taking them. With instructions in fly-fishing, fly-making, and rod-making; and directions for fish-breeding. Porter and Coates, Philadelphia. 733p. - Porch, C. E. 2000. Status of the red drum stocks of the Gulf of Mexico (Version 2.1). Sustainable Fisheries Division Contribution No. SFD-99/00-85 67 pp. - Porch C. E., C.A. Wilson C.A., D.L. Nieland. 2002. A new growth model for red drum (*Sciaenops ocellatus*) that accommodates seasonal and ontogenic changes in growth rates. Fish Bull 100:149–152. - Russell, S. J. 1988. Bioprofile sampling of red drum. Appendix B. in J. A Shepard [Ed.], Louisiana Red Drum Research, MARFIN final report, Contract No. NA87-WC-H-06122. Louisiana Department of Wildlife and Fisheries, Seafood Division, Finfish Section, Baton Rouge, Louisiana, 18 pp. - SAS Institute Inc. 2008. SAS/STAT® 9.2 User's Guide. Cary, NC: SAS Institute Inc. - Scott-Denton, E., P. Cryer, M. Duffy, J. Gocke, M. Harrelson, D. Kinsella, J. Nance, J. Pulver, R. Smith, J. Williams. 2012. Characterization of the U.S. Gulf of Mexico and South Atlantic penaeid and rock shrimp fisheries based on observer data. Marine Fisheries Review. 74. - SEDAR. 2006. Gulf of Mexico Vermilion Snapper SEDAR 9 Assessment Report 3. SEDAR, Charleston, SC. Available at: https://sedarweb.org/docs/sar/SEDAR9_SAR3%20GOM%20VermSnap.pdf - SEDAR. 2006. Gulf of Mexico Red Grouper SEDAR 12 Assessment Report 1. SEDAR, Charleston, SC. Available at: http://sedarweb.org/docs/sar/S12SAR1%20Gulf%20Red%20Grouper%20Completev2.pdf - SEDAR. 2015. SEDAR 44 Atlantic Red Drum Stock Assessment Report. SEDAR, North Charleston SC. 890 pp. available online at: http://sedarweb.org/sedar-44. - SEAMAP. 2013. Bottom Longline Survey Protocol. Gulf States Marine Fisheries Commission. 2404 Government St. Ocean Springs, MS 39564. Version 2.0 - Shepard, J. A. 2004. 2004 Louisiana's Red Drum Escapement Rate Update. Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA. - Vecchio, J.L., and C. A. Wenner. 2007. Catch-and-Release Mortality in Subadult and Adult Red Drum Captured with Popular Fishing Hook Types. North American Journal of Fisheries Management 27:891–899, 2007. - Wilson, C. A., and D. L. Neiland. 1994. Reproductive biology of red drum, *Sciaenops ocellatus*, from the neritic waters of the northern Gulf of Mexico. Fishery Bulletin 92:841-850. ## 10. Tables Table 1: Louisiana annual commercial inshore Red Drum landings and offshore Red Drum landings by state and for the Gulf of Mexico in units of pounds taken from NOAA Fisheries statistical records. Offshore landings post-1988 are assumed as miscoded inshore catches and not included in the GOM offshore landings values. | | Inshore_lbs | Offshore_lbs | | | | | | | | |------|-------------|--------------|----|--------|-----------|---------|-----------|--|--| | Year | LA | LA | TX | MS | AL | FL | GOM | | | | 1982 | 1,278,130 | 176,380 | 0 | 27,190 | 55,010 | 233,530 | 492,110 | | | | 1983 | 1,761,350 | 177,270 | 0 | 10,000 | 342,320 | 198,860 | 728,450 | | | | 1984 | 2,247,680 | 360,710 | 0 | 10,680 | 841,490 | 135,020 | 1,347,900 | | | | 1985 | 2,229,310 | 704,280 | 0 | 16,270 | 2,841,650 | 215,610 | 3,777,810 | | | | 1986 | 4,465,900 | 3,351,800 | 0 | 22,470 | 5,303,020 | 582,520 | 9,259,810 | | | | 1987 | 4,528,900 | 42,280 | 0 | 27,510 | 11,520 | 53,220 | 134,530 | | | | 1988 | 243,590 | 1,790 | 0 | 2,760 | 210 | 680 | 5,440 | | | | 1989 | 24,810 | 0 | 0 | 1,340 | 890 | 0 | 0 | | | | 1990 | 0 | 0 | 0 | 430 | 0 | 0 | 0 | | | | 1991 | 0 | 0 | 0 | 890 | 10 | 0 | 0 | | | | 1992 | 0 | 0 | 0 | 220 | 0 | 0 | 0 | | | | 1993 | 1,880 | 0 | 0 | 20 | 0 | 0 | 0 | | | | 1994 | 2,960 | 0 | 0 | 910 | 0 | 0 | 0 | | | | 1995 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 1996 | 1,930 | 0 | 0 | 60 | 0 | 0 | 0 | | | | 1997 | 0 | 0 | 0 | 1,030 | 0 | 0 | 0 | | | | 1998 | 4,770 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 1999 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 2000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Table 2: Louisiana annual recreational and inshore commercial Red Drum landings along with the Gulf of Mexico offshore landings in units of pounds derived from NOAA Fisheries statistical records, LDWF Trip Ticket Program, MRIP, and LA Creel. | - | Recreational | Inshore commercial | Offshore commercial | %Recreational | %Inshore commercial | %Offshore commercial | |------|--------------|--------------------|---------------------|---------------|---------------------|----------------------| | Year | LA | LA | GOM | LA | LA | GOM | | 1982 | 2,855,725 | 1,278,130 | 492,110 | 61.7% | 27.6% | 10.6% | | 1983 | 2,952,651 | 1,761,350 | 728,450 | 54.3% | 32.4% | 13.4% | | 1984 | 2,367,474 | 2,247,680 | 1,347,900 | 39.7% | 37.7% | 22.6% | | 1985 | 2,174,399 | 2,229,310 | 3,777,810 | 26.6% | 27.2% | 46.2% | | 1986 | 1,993,626 | 4,465,900 | 9,259,810 | 12.7% | 28.4% | 58.9% | | 1987 | 2,306,832 | 4,528,900 | 134,530 | 33.1% | 65.0% | 1.9% | | 1988 | 2,424,843 | 243,590 | 5,440 | 90.7% | 9.1% | 0.2% | | 1989 | 3,251,530 | 24,810 | 0 | 99.2% | 0.8% | 0.0% | | 1990 | 2,977,243 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 1991 | 2,804,216 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 1992 | 4,072,597 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 1993 | 5,087,621 | 1,880 | 0 | 100.0% | 0.0% | 0.0% | | 1994 | 4,610,560 | 2,960 | 0 | 99.9% | 0.1% | 0.0% | | 1995 | 7,502,450 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 1996 | 7,157,264 | 1,930 | 0 | 100.0% | 0.0% | 0.0% | | 1997 | 7,128,952 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 1998 | 5,442,578 | 4,770 | 0 | 99.9% | 0.1% | 0.0% | | 1999 | 6,642,380 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2000 | 8,288,060 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2001 | 7,417,608 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2002 | 7,196,064 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2003 | 6,592,330 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2004 | 5,778,575 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2005 | 4,733,062 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2006 | 5,098,331 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2007 | 6,061,853 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2008 | 6,672,823 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2009 | 7,355,418 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2010 | 8,346,255 | 0 | 0 | 100.0% | 0.0% | 0.0% | |
2011 | 8,304,959 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2012 | 6,044,853 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2013 | 7,928,973 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2014 | 6,623,057 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2015 | 5,866,044 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2016 | 4,872,001 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2017 | 6,552,359 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2018 | 8,286,649 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2019 | 5,276,636 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2020 | 4,768,147 | 0 | 0 | 100.0% | 0.0% | 0.0% | | 2021 | 3,538,227 | 0 | 0 | 100.0% | 0.0% | 0.0% | Table 3: Louisiana annual recreational Red Drum harvest and live release (discards) estimates as numbers of fish derived from MRIP and LA Creel. | | | Recre | ational | | |--------------|------------------------|------------------------|----------------|----------------| | Year | Harvest | Discards | %Harvest | %Discards | | 1982 | 1,227,523 | 146,809 | 89.3% | 10.7% | | 1983 | 1,724,488 | 278,284 | 86.1% | 13.9% | | 1984 | 1,083,042 | 121,176 | 89.9% | 10.1% | | 1985 | 921,499 | 97,125 | 90.5% | 9.5% | | 1986 | 895,241 | 166,739 | 84.3% | 15.7% | | 1987 | 1,012,788 | 795,733 | 56.0% | 44.0% | | 1988 | 436,543 | 1,038,796 | 29.6% | 70.4% | | 1989 | 768,754 | 1,154,280 | 40.0% | 60.0% | | 1990 | 553,138 | 634,266 | 46.6% | 53.4% | | 1991 | 657,584 | 2,660,087 | 19.8% | 80.2% | | 1992 | 1,036,207 | 2,043,424 | 33.6% | 66.4% | | 1993 | 1,053,450 | 1,597,268 | 39.7% | 60.3% | | 1994 | 954,950 | 1,534,416 | 38.4% | 61.6% | | 1995 | 1,577,999 | 1,630,496 | 49.2% | 50.8% | | 1996 | 1,371,690 | 1,269,247 | 51.9% | 48.1% | | 1997 | 1,219,791 | 1,888,189 | 39.2% | 60.8% | | 1998 | 1,151,118 | 2,157,019 | 34.8% | 65.2% | | 1999 | 1,464,900 | 2,090,305 | 41.2% | 58.8% | | 2000 | 1,708,900 | 2,307,833 | 42.5% | 57.5% | | 2001 | 1,784,616 | 2,203,119 | 44.8% | 55.2% | | 2002 | 1,389,950 | 2,285,344 | 37.8% | 62.2% | | 2003 | 1,237,995 | 1,915,836 | 39.3% | 60.7% | | 2004 | 1,092,037 | 1,407,440 | 43.7% | 56.3% | | 2005 | 929,005 | 1,369,888 | 40.4% | 59.6% | | 2006 | 996,732 | 1,741,012 | 36.4% | 63.6% | | 2007 | 1,298,861 | 1,820,225 | 41.6% | 58.4% | | 2008 | 1,448,257 | 2,036,602 | 41.6% | 58.4% | | 2009 | 1,572,292 | 2,507,394 | 38.5% | 61.5% | | 2010 | 2,008,538 | 2,848,129 | 41.4% | 58.6% | | 2011
2012 | 1,911,866 | 1,878,382 | 50.4% | 49.6% | | - | 1,430,510 | 2,021,773 | 41.4% | 58.6% | | 2013
2014 | 1,876,299 | 2,586,608 | 42.0% | 58.0% | | 2014 | 1,282,923 | 2,337,498 | 35.4%
35.4% | 64.6%
64.6% | | 2016 | 1,244,926
1,045,128 | 2,267,997
1,711,377 | 37.9% | 62.1% | | 2017 | 1,642,516 | 2,495,551 | 39.7% | 60.3% | | 2017 | 1,977,147 | 2,741,797 | 41.9% | 58.1% | | 2019 | 1,224,198 | 1,736,637 | 41.3% | 58.7% | | 2020 | 1,053,003 | 1,472,163 | 41.7% | 58.3% | | 2021 | 736,739 | 736,769 | 50.0% | 50.0% | Table 4: Abundance estimates of the NMFS Red Drum mark-recapture experiments (without estimate expansion to outside the study areas). | | | I | N estimates | S | | | | |----|-----|------------|-------------|------------|------------|-------|------------------| | Y | ear | west | east | total | SE | RSE | notes | | 19 | 987 | | | 5,274,405 | 900,000 | 0.171 | | | 19 | 997 | 14,606,407 | 526,176 | 15,132,583 | 10,326,004 | 0.682 | 0 recapture west | | 19 | 997 | 7,303,203 | 526,176 | 7,829,379 | 5,342,525 | 0.682 | 1 recapture west | | 19 | 997 | 4,868,802 | 526,176 | 5,394,978 | 3,681,365 | 0.682 | 2 recapture west | Table 5: Size frequency of inshore and offshore commercial landings (Russell 1988), age compositions of offshore commercial purse seine landings (Beckman 1989), and the age composition of offshore fishery-independent purse seine samples of Red Drum schools conducted by NOAA Fisheries and the LSU Coastal Fisheries Institute (MARFIN). Biological ages have been adjusted to calendar ages. | NOAA I | 1811611 | es and t | ne LSC | Coasia | ai i isiic | 1168 1118 | illule (1 | VIAKIT | 1 v). D 10 | nogicai | ages nave | been aujusi | eu to catem | iai ages. | |---------|---------|----------|--------|--------|------------|-----------|-----------|--------|-------------------|---------|-----------|-------------|----------------|----------------| | Beckman | | | | | | | | | | | | Russell (q | ears combine | ed) 1985-1987 | | Years | n | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | TL_in | inshore | offshore | | 85-86 | 788 | 0.000 | 0.012 | 0.049 | 0.058 | 0.039 | 0.048 | 0.055 | 0.051 | 0.027 | 0.662 | 10 | 0.000 | 0.000 | | 86-87 | 540 | 0.000 | 0.010 | 0.038 | 0.041 | 0.053 | 0.045 | 0.033 | 0.049 | 0.057 | 0.674 | 11 | 0.001 | 0.000 | | | | | | | | | | | | | | 12 | 0.001 | 0.000 | | | | | | | | | | | | | | 13 | 0.001 | 0.000 | | MARFIN | | | | | | | | | | | | 14 | 0.000 | 0.000 | | Year | n | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | 15 | 0.001 | 0.000 | | 1986 | 174 | 0.000 | 0.017 | 0.046 | 0.052 | 0.029 | 0.023 | 0.029 | 0.052 | 0.017 | 0.736 | 16 | 0.029 | 0.000 | | 1987 | 562 | 0.000 | 0.000 | 0.043 | 0.036 | 0.055 | 0.053 | 0.032 | 0.041 | 0.064 | 0.676 | 17 | 0.054 | 0.000 | | 1988 | 614 | 0.000 | 0.000 | 0.036 | 0.042 | 0.065 | 0.052 | 0.046 | 0.062 | 0.054 | 0.643 | 18 | 0.074 | 0.000 | | 1997 | 556 | 0.000 | 0.002 | 0.004 | 0.043 | 0.070 | 0.113 | 0.160 | 0.018 | 0.020 | 0.570 | 19 | 0.157 | 0.000 | | 1998 | 371 | 0.000 | 0.000 | 0.003 | 0.024 | 0.159 | 0.084 | 0.137 | 0.162 | 0.027 | 0.404 | 20 | 0.173 | 0.000 | | | | | | | | | | | | | | 21 | 0.103 | 0.000 | | | | | | | | | | | | | | 22 | 0.045 | 0.001 | | | | | | | | | | | | | | 23 | 0.105 | 0.000 | | | | | | | | | | | | | | 24 | 0.050
0.103 | 0.000
0.000 | | | | | | | | | | | | | | 25
26 | 0.103 | 0.000 | | | | | | | | | | | | | | 20
27 | 0.039 | 0.000 | | | | | | | | | | | | | | 28 | 0.028 | 0.002 | | | | | | | | | | | | | | 29 | 0.003 | 0.003 | | | | | | | | | | | | | | 30 | 0.004 | 0.010 | | | | | | | | | | | | | | 31 | 0.000 | 0.017 | | | | | | | | | | | | | | 32 | 0.000 | 0.026 | | | | | | | | | | | | | | 33 | 0.000 | 0.058 | | | | | | | | | | | | | | 34 | 0.000 | 0.095 | | | | | | | | | | | | | | 35 | 0.000 | 0.138 | | | | | | | | | | | | | | 36 | 0.000 | 0.177 | | | | | | | | | | | | | | 37 | 0.003 | 0.199 | | | | | | | | | | | | | | 38 | 0.000 | 0.101 | | | | | | | | | | | | | | 39 | 0.000 | 0.086 | | | | | | | | | | | | | | 40 | 0.000 | 0.048 | | | | | | | | | | | | | | 41 | 0.000 | 0.027 | | | | | | | | | | | | | | 42 | 0.000 | 0.008 | 43 44 45 0.000 0.000 0.000 0.002 0.003 0.001 Table 6: Annual seasonal size frequencies of Louisiana recreational Red Drum harvest taken from MRIP (1982-2013) and the LDWF Biological Sampling Program. Seasons represent January-April (season1), May-August (season 2), and September-December (season 3). | season | TL IN | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | |--------|----------|-------|----------------|----------------|----------------|-------|----------------|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | 1 | 5 | 1002 | 1000 | 1004 | 1000 | 1000 | 1007 | 1000 | 1000 | 1000 | 1001 | 1002 | 1000 | 1004 | 1000 | 1000 | 1007 | 1000 | 1000 | 2000 | 2001 | | 1 | 6 | | | | | | | | | | | | 0.007 | | | | | | | | | | 1 | 7 | | | 0.005 | | | | | | | | | | | | | | | | | | | 1 | 8 | | 0.033 | 0.029 | | 0.019 | | | | | | | 0.024 | | | | | | | | | | 1 | 9 | 0.019 | 0.040 | 0.034 | 0.004 | | | | | | | 0.000 | 0.004 | 0.003 | | 0.006 | 0.004 | | | | | | 1 | 10 | | 0.010 | 0.097 | 0.009 | | | | | | | 0.002 | 0.024 | | | 0.007 | 0.001 | | | | | | 1 | 11 | 0.008 | 0.106
0.178 | 0.230
0.068 | 0.010 | 0.005 | 0.039 | 0.015 | | | | 0.010 | 0.021 | | 0.006 | 0.007
0.011 | 0.008 | | | | | | 1 | 12
13 | 0.008 | 0.178 | 0.068 | 0.019
0.007 | 0.005 | 0.039 | 0.015 | | | | 0.008
0.036 | 0.007
0.006 | | 0.006 | 0.006 | 0.006 | 0.010 | | 0.003 | | | 1 | 14 | 0.073 | 0.133 | 0.122 | 0.007 | 0.067 | 0.002 | 0.101 | 0.015 | 0.023 | | 0.030 | 0.000 | 0.012 | 0.014 | 0.004 | 0.013 | 0.010 | 0.008 | 0.003 | 0.006 | | 1 | 15 | 0.059 | 0.065 | 0.130 | 0.061 | 0.007 | 0.103 | 0.118 | 0.123 | 0.009 | | 0.149 | 0.012 | 0.012 | 0.016 | 0.004 | 0.013 | 0.115 | 0.015 | 0.005 | 0.022 | | 1 | 16 | 0.000 | 0.028 | 0.035 | 0.173 | 0.116 | 0.230 | 0.037 | 0.121 | 0.032 | 0.016 | 0.249 | 0.069 | 0.049 | 0.059 | 0.072 | 0.048 | 0.203 | 0.103 | 0.084 | 0.089 | | 1 | 17 | 0.078 | 0.111 | 0.060 | 0.207 | 0.213 | 0.130 | 0.044 | 0.225 | 0.090 | 0.169 | 0.179 | 0.090 | 0.060 | 0.079 | 0.085 | 0.073 | 0.140 | 0.138 | 0.126 | 0.081 | | 1 | 18 | 0.044 | 0.141 | 0.003 | 0.229 | 0.243 | 0.050 | 0.040 | 0.121 | 0.088 | 0.113 | 0.072 | 0.130 | 0.059 | 0.039 | 0.060 | 0.076 | 0.044 | 0.075 | 0.053 | 0.075 | | 1 | 19 | 0.107 | | 0.003 | 0.024 | 0.014 | 0.055 | 0.059 | 0.164 | 0.030 | 0.066 | 0.007 | 0.040 | 0.127 | 0.060 | 0.083 | 0.082 | 0.016 | 0.085 | 0.057 | 0.080 | | 1 | 20 | 0.055 | | 0.004 | 0.047 | 0.042 | 0.023 | 0.042 | 0.055 | 0.229 | 0.060 | 0.010 | 0.127 | 0.127 | 0.133 | 0.140 | 0.079 | 0.053 | 0.112 | 0.045 | 0.099 | | 1 | 21 | 0.128 | 0.051 | | 0.004 | 0.002 | 0.006 | 0.030 | 0.046 | 0.128 | 0.039 | 0.013 | 0.113 | 0.118 | 0.115 | 0.101 | 0.056 | 0.035 | 0.096 | 0.078 | 0.106 | | 1 | 22 | 0.111 | | | | 0.002 | | 0.010 | 0.005 | 0.131 | 0.057 | 0.016 | 0.088 | 0.075 | 0.090 | 0.076 | 0.066 | 0.046 | 0.079 | 0.115 | 0.101 | | 1 | 23 | 0.003 | | 0.040 | 0.008 | 0.003 | 0.082 | | 0.027 | 0.050 | 0.103 | 0.020 | 0.072 | 0.101 | 0.069 | 0.091 | 0.108 | 0.034 | 0.085 | 0.103 | 0.117 | | 1 | 24 | 0.126 | | 0.013 | 0.009
0.004 | 0.027 | 0.026 | | 0.028
0.026 | 0.041
0.017 | 0.083 | 0.014
0.019 | 0.027
0.023 | 0.045
0.081 | 0.025
0.089 | 0.060
0.044 | 0.054
0.088 |
0.061
0.064 | 0.050
0.032 | 0.044
0.053 | 0.080
0.041 | | 1 | 25
26 | 0.126 | 0.064 | | 0.060 | 0.060 | 0.002
0.010 | | 0.026 | 0.017 | 0.116
0.068 | 0.019 | 0.023 | 0.029 | 0.089 | 0.044 | 0.088 | 0.064 | 0.032 | 0.053 | 0.041 | | 1 | 27 | 0.059 | 0.004 | | 0.000 | 0.000 | 0.010 | | 0.003 | 0.026 | 0.052 | 0.034 | 0.024 | 0.029 | 0.033 | 0.040 | 0.075 | 0.046 | 0.043 | 0.062 | 0.034 | | 1 | 28 | | 0.023 | | 0.000 | 0.012 | 0.042 | | 0.023 | | 0.032 | 0.040 | 0.022 | 0.013 | 0.033 | 0.043 | 0.023 | 0.032 | 0.012 | 0.026 | 0.022 | | i | 29 | | 0.015 | 0.009 | 0.012 | 0.007 | 0.003 | | | | 0.033 | 0.009 | 0.019 | 0.002 | 0.002 | 0.018 | 0.025 | 0.009 | 0.010 | 0.031 | 0.020 | | 1 | 30 | | | | 0.004 | | 0.000 | | 0.000 | 0.007 | | 0.004 | 0.008 | 0.002 | 0.003 | 0.010 | 0.020 | 0.001 | 0.007 | 0.005 | 0.003 | | 1 | 31 | | | | | | 0.001 | | 0.012 | 0.014 | | 0.003 | 0.010 | 0.001 | 0.019 | 0.003 | 0.011 | 0.010 | 0.001 | 0.000 | 0.006 | | 1 | 32 | | | 0.009 | | | | | | 0.000 | | 0.002 | 0.002 | | 0.002 | 0.002 | | 0.006 | 0.004 | 0.005 | | | 1 | 33 | | | | | | | | | 0.000 | | | | | | 0.003 | 0.001 | | 0.002 | 0.000 | 0.003 | | 1 | 34 | | | | | | | | | 0.000 | | 0.000 | | 0.003 | 0.003 | 0.000 | | 0.001 | 0.000 | | | | 1 | 35 | | | | 0.009 | 0.000 | | | | 0.000 | | 0.003 | 0.000 | | | | 0.000 | 0.004 | 0.002 | | 0.000 | | 1 | 36 | | | | 0.000 | 0.000 | | | | 0.000 | | 0.003 | 0.000 | 0.004 | | 0.000 | 0.006 | 0.001 | 0.001 | | 0.002 | | 1 | 37
38 | | | | 0.009 | 0.002 | | | | 0.004
0.040 | | 0.003
0.004 | 0.000 | 0.001 | 0.013 | 0.000 | 0.005
0.004 | 0.001
0.001 | 0.004
0.004 | 0.002 | | | 1 | 39 | | | | 0.011 | | | | | 0.040 | 0.003 | 0.004 | | | 0.000 | 0.000 | 0.004 | 0.001 | 0.004 | 0.002 | | | · i | 40 | | | | 0.011 | | | | 0.000 | 0.040 | 0.003 | 0.004 | 0.001 | | 0.000 | 0.000 | 0.007 | 0.002 | 0.003 | 0.002 | 0.002 | | 1 | 41 | | 0.000 | | | | | | 0.000 | 0.040 | | 0.002 | 0.001 | | 0.000 | 0.001 | 0.009 | 0.002 | 0.001 | 0.004 | 0.002 | | 1 | 42 | | 3.000 | | | | | 0.019 | | | | 0.000 | | | | 3.001 | 3.000 | 0.001 | | 0.004 | | | 1 | 43 | | | | | | | | | 0.000 | | 0.000 | | | 0.003 | | | 0.001 | 0.000 | 0.007 | | | 1 | 44 | | | | | | | | | | | | | | | | | 0.001 | | 0.003 | | | 1 | 45 | | | | | | | | | | | | | | | | | | 0.002 | 0.002 | | | 1 | 46 | | | | | | | | | | | | 0.012 | | 0.004 | | | | | | | | 1 | 47 | Table 6 (continued): | 1 5 6 1 7 7 8 1 9 1 10 1 10 1 11 10 1 11 10 1 11 11 10 1 11 1 | season | TL IN | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |--|--------|----------------| | 1 7 1 8 1 9 1 10 10 10 11 11 11 11 11 11 11 11 11 1 | 1 | _ | | | | | | | | | | - | - | | - | | | - | | | | | | 1 8 1 9 1 10 10 10 10 11 11 11 11 12 1 12 1 | 1 | 1 10 1 11 1 12 1 13 1 10 1 14 1 15 1 10 1 15 1 10 1 15 1 10 1 15 1 10 1 17 1 12 1 12 1 13 1 10 1 14 1 15 1 10 1 15 1 10 1 15 1 10 1 15 1 10 1 15 1 10 1 15 1 10 1 15 1 10 1 10 | • | 1 10 11 11 12 13 10 13 10 13 10 13 10 14 15 15 10 14 15 15 15 15 15 15 15 | 1 | 1 | 1 | 1 | • | | | | | | | | | | | | | | | | | | | 0.001 | | | | 13 | • | | | | | | | | | | | 0.002 | | | 0.002 | | | | | 0.001 | | | | 1 | 1 | | 0.002 | | | | | | 0.002 | | | | 0.001 | 0.003 | | 0.005 | | 0.003 | 0.003 | | | | | 1 | 1 | | | | 0.002 | | | 0.007 | 0.006 | 0.005 | 0.012 | 0.002 | 0.002 | | | | 0.000 | 0.001 | | | 0.004 | | | 1 17 | 1 | 15 | 0.003 | 0.027 | 0.042 | 0.065 | 0.057 | 0.040 | 0.021 | 0.084 | 0.015 | 0.046 | 0.026 | | 0.014 | 0.035 | 0.034 | 0.059 | 0.046 | 0.037 | 0.038 | 0.050 | | 1 18 | • | 0.135 | | 1 19 | - | 0.103 | | 1 20 | 1 | 0.078 | | 1 | 1 | 0.060 | | 1 22 0.060 0.062 0.075 0.066 0.062 0.076 0.056 0.077 0.068 0.074 0.076 0.053 0.086 0.113 0.066 1 23 0.054 0.057 0.094 0.056 0.076 0.061 0.124 0.088 0.079 0.066 0.067 0.066 0.067 0.066 0.083 0.036 0.048 0.054 0.038 0.041 0.046 0.042 0.045 0.038 0.043 0.046 0.055 0.041 0.046 0.043 0.044 0.038 0.017 0.038 1 28 0.021 0.046 0.035 0.027 0.033 0.041 | - | | | | | | | | | | | | | | | | | | | - | | 0.051 | | 1 23 0.054 0.057 0.062 0.075 0.094 0.056 0.076 0.061 0.124 0.088 0.079 0.066 0.067 0.048 0.071 0.069 0.084 0.054 1 24 0.049 0.087 0.088 0.054 0.042 0.046 0.049 0.066 0.083 0.055 0.045 0.069 0.062 0.042 0.081 1 25 0.083 0.137 0.039 0.044 0.067 0.050 0.062 0.049 0.051 0.026 0.083 0.043 0.081 0.040 0.041 0.068 0.047 0.050 0.065 0.041 0.026 0.020 0.058 0.059 0.045 0.033 0.041 0.041 0.044 0.014 0.044 0.014 0.044 0.018 0.020 0.026 0.020 0.051 0.025 0.033 0.043 0.081 0.044 0.038 0.017 0.038 0.023 0.035 0.031 0.023 0.022 0.054 1 28 0.013 0.028 | 1 | 0.067
0.069 | | 1 24 0.049 0.087 0.088 0.042 0.136 0.046 0.049 0.066 0.083 0.036 0.055 0.045 0.059 0.048 0.069 0.042 0.081 1 25 0.083 0.137 0.039 0.044 0.050 0.065 0.049 0.051 0.026 0.083 0.043 0.066 0.041 0.050 0.043 0.056 1 26 0.047 0.058 0.041 0.021 0.050 0.030 0.018 0.059 0.045 0.037 0.029 0.055 0.041 0.049 0.068 0.049 0.050 0.045 0.037 0.029 0.055 0.041 0.019 0.088 0.018 0.020 0.011 0.025 0.032 0.033 0.044 0.038 0.013 0.025 0.033 0.024 0.020 0.017 0.035 0.033 0.044 0.038 0.021 0.032 0.022 0.054 0.014 0.030 0.020 | i | | | | | | | | | - | | | | | | | | | | - | | 0.068 | | 1 25 0.083 0.137 0.039 0.044 0.057 0.050 0.049 0.049 0.051 0.026 0.083 0.043 0.046 0.041 0.068 0.043 0.056 1 26 0.047 0.053 0.065 0.041 0.014 0.044 0.014 0.044 0.014 0.044 0.014 0.014 0.044 0.014 0.014 0.044 0.014 0.044 0.014 0.044 0.014 0.020 0.026 0.020 0.051 0.025 0.033 0.034 0.034 0.031 0.023 0.022 0.054 1 28 0.021 0.046 0.020 0.016 0.020 0.017 0.035 0.035 0.032 0.027 0.033 0.036 0.017 0.032 0.033 0.034 0.027 0.035 0.030 0.027 0.054 0.024 0.020 0.017 0.035 0.038 0.022 0.004 0.033 0.007 0.016 0.006 | • | 0.064 | | 1 26 0.047 0.053 0.065 0.041 0.021 0.050 0.030 0.018 0.058 0.059 0.045 0.037 0.029 0.055 0.041 0.019 0.038 0.017 0.088 1 27 0.018 0.024 0.014 0.044 0.018 0.020 0.026 0.020 0.051 0.025 0.033 0.071 0.033 0.044 0.038 0.011 0.023 0.022 0.054 1 28 0.021 0.046 0.032 0.032 0.032 0.032 0.036 0.020 0.033 0.038 0.023 0.030 1 30 0.035 0.018 0.008 0.004 0.006 0.013 0.009 0.088 0.008 0.018 0.005 0.033 0.022 0.004 0.008 0.004 0.003 0.006 0.007 0.015 0.027 0.014 0.016 0.002 1 31 0.001 0.025 0.00 | 1 | 0.042 | | 1 28 0.021 0.046 0.035 0.027 0.033 0.038 0.019 0.046 0.020 0.017 0.035 0.038 0.023 0.035 0.030 0.027 0.032 0.017 0.032 1 29 0.013 0.028 0.009 0.032 0.007 0.016 0.006 0.013 0.009 0.088 0.008 0.018 0.030 0.039 0.023 0.045 0.014 0.030 1 30 0.035 0.018 0.006 0.002 0.014 0.004 0.003 0.006 0.007 0.015 0.027 0.014 0.016 0.024 0.009 0.006 0.009 0.020 1 31 0.001 0.025 0.003 0.022 0.000 0.014 0.010 0.006 0.000 0.004 0.001 0.006 0.000 0.004 0.001 0.007 0.003 0.000 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 | 1 | 26 | 0.047 | 0.053 | 0.065 | 0.041 | 0.021 | | 0.030 | 0.018 | 0.058 | 0.059 | 0.045 | 0.037 | 0.029 | 0.055 | 0.041 | 0.019 | 0.038 | 0.017 | 0.088 | 0.021 | | 1 29 0.013 0.028 0.009 0.032 0.007 0.016 0.006 0.013 0.009 0.088 0.008 0.018 0.030 0.039 0.023 0.045 0.014 0.030 1 30 0.035 0.018 0.006 0.002 0.010 0.008 0.004 0.003 0.006 0.007 0.015 0.027 0.014 0.016 0.024 0.009 0.006 0.009 0.020 1 31 0.001 0.025 0.003 0.022 0.000 0.014 0.010 0.001 0.006 0.000 0.004 0.011 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.0 | 1 | | 0.018 | 0.024 | 0.014 | 0.044 | 0.018 | 0.020 | 0.026 | 0.020 | | 0.025 | | | | 0.044 | 0.038 | 0.031 | | 0.022 | 0.054 | 0.044 | | 1 30 0.035 0.018 0.006 0.002 0.010 0.008 0.004 0.003 0.006 0.007 0.015 0.027 0.014 0.016 0.024 0.009 0.006 0.009 0.020 1 31 0.001 0.025 0.003 0.022 0.000 0.014 0.010 0.006 0.000 0.004 0.018 0.011 0.006 0.012 0.013 0.007 0.014 1 32 0.007 0.005 0.007 0.010 0.007 0.003 0.000 0.010 0.003 0.001 0.003 0.001 0.003 0.001 0.003
0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.0 | 1 | 0.043 | | 1 31 0.001 0.025 0.003 0.022 0.000 0.014 0.010 0.006 0.000 0.004 0.018 0.010 0.011 0.006 0.012 0.013 0.007 0.014 1 32 0.007 0.005 0.007 0.010 0.007 0.003 0.000 0.010 0.003 0.002 0.003 0.001 0.004 0.011 0.004 0.011 0.001 0.006 0.008 1 34 0.001 0.004 0.003 0.001 0.003 0.002 0.001 0.003 0.0 | 1 | 0.025 | | 1 32 0.007 0.005 0.007 0.010 0.007 0.003 0.000 0.010 0.003 0.002 0.008 0.017 0.004 0.011 0.001 0.006 0.008 1 33 0.004 0.003 0.001 0.003 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002 0.001 0.003 | 1 | 0.024 | | 1 33 0.004 0.003 0.001 0.003 0.005 0.001 0.003 0.009 0.009 0.002 0.002 0.001 0.003 0.003 0.003 0.003 0.003 0.008 1 34 0.001 0.004 0.000 0.013 0.002 0.001 0.003 0.007 0.001 0.009 0.003 0.003 0.003 0.008 1 35 0.003 0.000 0.010 0.002 0.001 0.001 0.001 0.003 0.004 0.005 0.000 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.0 | 1 | | | 0.025 | | | | 0.014 | | | | | | | | | | | | | | 0.018 | | 1 34 0.001 0.004 0.000 0.013 0.002 0.001 0.001 0.007 0.001 0.005 0.001 0.000 1 35 0.003 0.000 0.010 0.002 0.001 0.001 0.003 0.004 0.005 0.000 0.003 0.004 0.003 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.003 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.003 0.003 0.004 0.004 0.004 0.003 0.004 0.003 | 1 | | 0.007 | 0.004 | | | | 0.005 | 0.007 | | | | | | | | | 0.011 | | | | 0.010
0.001 | | 1 35 0.003 0.000 0.010 0.002 0.005 0.001 0.001 0.001 0.003 0.004 0.005 0.000 0.003 0.004 0.005 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.003 0.001 0.003 1 38 0.001 0.003 0.048 0.013 0.002 0.004 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.001 0.002 0.002 0.004 0.003 0.003 0.002 0.003 0.004 0.004 0.003 0.004 0.003 | 1 | | 0.001 | | | | | 0.005 | 0.002 | | 0.003 | 0.009 | 0.000 | | | | 0.009 | | | | 0.006 | 0.001 | | 1 36 0.003 0.005 0.008 0.009 0.002 0.003 0.005 0.001 0.001 0.005 0.001 0.005 0.001 0.003 0.003 0.000 0.001 0.003 0.001 0.003 0.000 0.001 0.003 0.000 0.001 0.003 0.000 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.003 0.003 0.004 0.004 0.004 0.001 0.002 0.002 0.004 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.002 0.004 0.004 0.004 0.004 0.001 0.002 0.002 0.004 0.003 0.003 0.003 0.003 0.003 0.004< | 1 | | | | | | | 0.005 | | | 0.001 | | 0.003 | | | | 0.003 | 0.003 | | | | 0.004 | | 1 37 0.000 0.007 0.019 0.022 0.006 0.005 0.001 0.001 0.008 0.003 0.000 0.003 0.003 0.000 0.003 0.000 0.000 0.003 0.000 0.003 0.000 0.000 0.003 0.000 0.003 0.004 0.004 0.004 0.001 0.002 0.001 0.002 0.004 0.003 0.003 0.003 0.003 0.003 0.004 0.004 1 40 0.047 0.003 0.019 0.001 0.004 0.001 0.001 0.009 0.001 0.002 0.001 0.004 0.003 0.001 0.004 0.005 1 40 0.035 0.000 0.001 0.004 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 1 41 0.035 0.000 0.001 0.001 0.004 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 | 1 | | | | | | | | | | | | 0.000 | 0.00 | | | | | | | | 0.001 | | 1 39 0.001 0.005 0.032 0.009 0.003 0.001 0.001 0.002 0.002 0.004 0.003 0.003 0.000 0.005 1 40 0.047 0.003 0.011 0.028 0.004 0.001 0.001 0.008 0.006 0.001 0.004 0.000 0.001 1 41 0.035 0.000 0.019 0.001 0.004 0.001 0.009 0.001 0.002 0.001 0.001 0.000 0.001 0.000 | 1 | 37 | 0.000 | 0.007 | 0.019 | 0.022 | 0.006 | | 0.005 | 0.001 | 0.001 | | 0.008 | 0.003 | 0.000 | | | | | | | 0.003 | | 1 40 0.047 0.003 0.011 0.028 0.000 0.004 0.001 0.001 0.008 0.006 0.001 0.004 0.000 0.001 1 41 0.035 0.000 0.019 0.001 0.004 0.009 0.001 0.002 0.001 0.001 0.000 0.001 0.000 | 1 | 38 | 0.001 | 0.003 | 0.048 | 0.013 | 0.002 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.002 | 0.014 | 0.003 | 0.003 | 0.009 | 0.002 | 0.002 | 0.003 | 0.004 | 0.002 | | 1 41 0.035 0.000 0.009 0.019 0.001 0.004 0.009 0.001 0.002 0.001 0.001 0.000 0.001 0.000 | 1 | | 0.001 | 0.005 | 0.032 | | 0.003 | 0.000 | 0.001 | | | | 0.002 | | | 0.003 | | | | 0.000 | 0.005 | 0.007 | | | 1 | _ | | | | | | | | 0.001 | 0.001 | | | | | | | 0.004 | | | | 0.005 | | 1 42 0.001 | 1 | | | | 0.009 | | | 0.001 | 0.004 | | | 0.009 | 0.001 | 0.002 | | | 0.000 | | | 0.000 | | 0.002 | | | 1 | | 0.001 | | | 0.001 | 0.001 | | | | | | | | | | | 0.003 | 0.000 | | | 0.002 | | 1 43 0.001 0.000 0.005 0.003 | 1 | | | 0.001 | 0.01E | | | | | 0.000 | | | | | | 0.003 | | 0.000 | | | | 0.001 | | 1 44 0.015 0.001 0.000 1 45 0.001 0.000 0.000 | 1 | | | | 0.015 | | | | 0.001 | | | | | | | | | 0.000 | | 0.000 | | | | 1 46 | 1 | | | | | | | | 0.001 | | | | | | 0.000 | | | | | 0.000 | | | | 1 47 | 1 | Table 6 (continued): | season | TL IN | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | |--------|----------|----------------|----------------|----------------|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | 2 | 4 | 1302 | 1300 | 1304 | 0.002 | 1300 | 1307 | 1300 | 1303 | 1330 | 1001 | 1002 | 1000 | 1004 | 1000 | 1000 | 1337 | 1330 | 1000 | 2000 | 2001 | | 2 | 5 | 0.010 | | | 0.002 | | 0.012 | | | | | | | | | | | | | | | | 2 | 6 | 2 | 7 | 0.055 | | 0.009 | | 0.002 | 0.006 | 0.014 | | | | | 0.002 | | | | | | | | | | 2 | 8 | 0.084 | 0.040 | | 0.011 | 0.017 | 0.044 | | | | | | 0.011 | | | | | | | | | | 2 | 9 | 0.134 | 0.039 | 0.056 | 0.091 | 0.036 | 0.152 | 0.008 | | | | 0.003 | 0.004 | | | | | | | | | | 2 | 10 | 0.147 | 0.043 | 0.021 | 0.072 | 0.181 | 0.088 | 0.023 | | | | 0.001 | 0.002 | 0.002 | 0.001 | 0.000 | 0.001 | | | | | | 2 | 11 | 0.180 | 0.128 | 0.061 | 0.184 | 0.168 | 0.220 | 0.003 | | 0.006 | 0.004 | 0.005 | | 0.002 | 0.004 | | 0.006 | | 0.010 | | | | 2 | 12 | 0.070 | 0.116 | 0.274 | 0.106 | 0.162 | 0.034 | 0.028 | | | | 0.006 | | 0.002 | 0.007 | 0.001 | 0.009 | | | | | | 2 | 13 | 0.033 | 0.066 | 0.063 | 0.127 | 0.063 | 0.010 | 0.037 | 0.003 | | 0.013 | 0.005 | | 0.008 | 0.013 | 0.001 | | 0.000 | 0.003 | 0.005 | 0.004 | | 2 | 14 | 0.028 | 0.097 | 0.032 | 0.019 | 0.067 | 0.070 | 0.036 | 0.008 | 0.019 | 0.006 | 0.009 | 0.004 | 0.005 | 0.006 | 0.025 | 0.001 | 0.009 | 0.006 | 0.004 | 0.002 | | 2 | 15 | 0.029 | 0.115 | 0.027 | 0.003 | 0.028 | 0.114 | 0.102 | 0.051 | 0.019 | | 0.026 | 0.049 | 0.020 | 0.061 | 0.023 | 0.037 | 0.032 | 0.026 | 0.004 | 0.017 | | 2 | 16 | 0.014 | 0.070 | 0.038 | 0.045 | 0.027 | 0.046 | 0.048 | 0.121 | 0.012 | | 0.215 | 0.132 | 0.090 | 0.189 | 0.050 | 0.123 | 0.131 | 0.095 | 0.050 | 0.090 | | 2
2 | 17 | 0.021
0.033 | 0.067
0.081 | 0.057
0.147 | 0.083 | 0.055
0.043 | 0.022
0.065 | 0.130
0.133 | 0.158
0.186 | 0.034
0.071 | 0.100 | 0.220
0.165 | 0.187
0.111 | 0.119
0.119 | 0.176
0.123 | 0.060
0.074 | 0.140
0.074 | 0.208
0.145 | 0.175
0.133 | 0.176
0.149 | 0.180
0.130 | | 2 | 18
19 | 0.033 | 0.051 | 0.147 | 0.000 | 0.043 | 0.003 | 0.133 | 0.100 | 0.071 | 0.109
0.062 | 0.165 | 0.111 | 0.119 | 0.123 | 0.074 | 0.074 | 0.143 | 0.133 | 0.149 | 0.130 | | 2 | 20 | 0.062 | 0.055 | 0.060 | 0.022 | 0.032 | 0.012 | 0.193 | 0.113 | 0.076 | 0.062 | 0.099 | 0.037 | 0.004 | 0.048 | 0.092 | 0.039 | 0.111 | 0.000 | 0.095 | 0.073 | | 2 | 21 | 0.023 | 0.000 | 0.000 | 0.043 | 0.043 | 0.036 | 0.077 | 0.038 | 0.113 | 0.324 | 0.101 | 0.073 | 0.030 | 0.043 | 0.060 | 0.041 | 0.035 | 0.069 | 0.065 | 0.054 | | 2 | 22 | 0.025 | | 0.013 | 0.024 | 0.014 | 0.020 | 0.073 | 0.030 | 0.068 | 0.138 | 0.013 | 0.054 | 0.005 | 0.039 | 0.081 | 0.059 | 0.030 | 0.059 | 0.034 | 0.061 | | 2 | 23 | 0.005 | 0.004 | 0.027 | 0.010 | 0.009 | 0.019 | 0.038 | 0.023 | 0.174 | 0.073 | 0.007 | 0.069 | 0.087 | 0.071 | 0.076 | 0.032 | 0.016 | 0.045 | 0.048 | 0.059 | | 2 | 24 | 0.002 | 0.001 | 0.018 | 0.013 | 0.002 | 0.008 | 0.010 | 0.024 | 0.017 | 0.028 | 0.018 | 0.086 | 0.070 | 0.026 | 0.090 | 0.083 | 0.033 | 0.030 | 0.052 | 0.046 | | 2 | 25 | 0.001 | 0.000 | 0.007 | 0.009 | 0.003 | 0.000 | 0.004 | 0.028 | 0.138 | 0.036 | 0.015 | 0.049 | 0.042 | 0.057 | 0.065 | 0.058 | 0.063 | 0.036 | 0.064 | 0.045 | | 2 | 26 | | 0.008 | 0.000 | 0.001 | 0.001 | 0.004 | |
0.018 | 0.026 | 0.044 | 0.016 | 0.025 | 0.047 | 0.023 | 0.084 | 0.045 | 0.017 | 0.038 | 0.049 | 0.038 | | 2 | 27 | | 0.007 | | | 0.003 | 0.003 | 0.006 | 0.021 | 0.036 | 0.022 | 0.007 | 0.009 | 0.026 | 0.021 | 0.026 | 0.040 | 0.016 | 0.015 | 0.042 | 0.015 | | 2 | 28 | 0.002 | | 0.000 | 0.013 | 0.004 | 0.005 | | 0.004 | 0.002 | 0.051 | 0.007 | 0.003 | 0.013 | 0.019 | 0.019 | 0.030 | 0.023 | 0.019 | 0.015 | 0.018 | | 2 | 29 | 0.008 | 0.004 | 0.000 | 0.009 | 0.000 | | | 0.019 | 0.015 | 0.021 | 0.016 | 0.006 | 0.006 | 0.011 | 0.006 | 0.030 | 0.008 | 0.015 | 0.013 | 0.011 | | 2 | 30 | | | 0.000 | 0.008 | 0.000 | 0.002 | 0.002 | 0.009 | | | 0.001 | | 0.002 | 0.004 | 0.011 | 0.006 | 0.004 | 0.005 | 0.022 | 0.039 | | 2 | 31 | | | | | 0.001 | | 0.003 | 0.013 | 0.001 | | 0.001 | | | 0.002 | | 0.009 | 0.001 | 0.008 | 0.006 | 0.002 | | 2 | 32 | 0.002 | | | 0.004 | 0.006 | | | 0.005 | 0.001 | | | | | | | 0.005 | 0.002 | 0.001 | 0.004 | 0.002 | | 2 | 33 | | | | 0.004 | | | | 0.007 | | | | | | 0.002 | | 0.004 | | 0.000 | 0.004 | | | 2 | 34 | | | | | | | 0.000 | 0.000 | 0.000 | | | 0.002 | 0.003 | 0.004 | 0.003 | 0.002 | 0.001 | 0.001 | 0.003 | 0.001 | | 2 | 35 | | | | | | | | 0.002 | 0.000 | | 0.004 | 0.002 | 0.000 | 0.001 | 0.005 | 0.001 | 0.007 | 0.001 | 0.001 | 0.009 | | 2 | 36 | | | 0.000 | | | | 0.000 | 0.016 | 0.000 | | 0.001 | 0.002 | 0.002 | 0.002 | 0.001 | 0.004 | 0.004 | 0.002 | 0.000 | 0.000 | | 2
2 | 37
38 | | | 0.000 | | | | 0.000 | 0.001 | 0.006
0.012 | 0.005 | 0.002
0.002 | 0.000 | 0.003 | 0.001
0.002 | 0.003
0.002 | 0.006
0.002 | 0.014
0.009 | 0.000
0.002 | 0.006
0.001 | 0.000
0.010 | | 2 | 39 | | | 0.000 | | | | | 0.001 | 0.012 | 0.005 | 0.002 | 0.000 | 0.003 | 0.002 | 0.002 | 0.002 | 0.009 | 0.002 | 0.001 | 0.010 | | 2 | 40 | | | 0.002 | | | | | 0.001 | 0.006 | | 0.001 | 0.000 | 0.002 | 0.003 | 0.002 | 0.004 | 0.004 | 0.003 | 0.001 | 0.001 | | 2 | 41 | | | 0.002 | | | | 0.000 | 0.003 | 0.000 | | 0.000 | 0.001 | 0.004 | 0.001 | 0.007 | 0.006 | 0.003 | 0.004 | 0.001 | 0.007 | | 2 | 42 | | | 0.002 | | | | 0.002 | 5.005 | | | 0.001 | 5.000 | 0.003 | 0.001 | 0.007 | 0.010 | 0.004 | 0.002 | 0.005 | 0.004 | | 2 | 43 | | | | | 0.003 | | 3.002 | | 0.000 | | 3.001 | 0.000 | 5.000 | 0.000 | 3.000 | 0.001 | 0.007 | 0.000 | 0.004 | | | 2 | 44 | | | | | 3.000 | | | | 3.000 | | | 3.000 | 0.003 | 3.000 | 0.001 | 0.001 | 3.007 | 3.000 | J.00 T | | | 2 | 45 | | | | | | | | | | | | | | | | 0.002 | | 0.003 | | | | 2 | 46 | | | | | | | | | | | 0.000 | | | | | | 0.000 | 0.000 | 0.001 | 0.003 | | 2 | 47 | Table 6 (continued): | season | TL IN | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |--------|----------|----------------| | 2 | 4 | 2002 | 2000 | 2004 | 2000 | 2000 | 2001 | 2000 | 2000 | 2010 | 2011 | 2012 | 2010 | 2017 | 2010 | 2010 | 2011 | 2010 | 2010 | 2020 | 2021 | | 2 | 5 | 2 | 6 | 2 | 7 | 2 | 8 | 2 | 9 | | | | | | | 0.002 | | 0.000 | | 0.000 | | | | | | | | | | | 2 | 10 | 2 | 11 | | | | 0.001 | | | 0.000 | | | | | | | | | 0.001 | 0.001 | | | | | 2 | 12 | | | | | | 0.001 | | | | | | 0.001 | | | | 0.001 | | 0.000 | | | | 2 | 13 | 0.000 | | 0.005 | 0.000 | | 0.000 | 0.004 | 0.000 | 0.001 | 0.005 | 0.003 | 0.001 | 0.000 | 0.001 | 0.002 | 0.001 | 0.001 | 0.006 | | 0.000 | | 2 | 14 | 0.000 | 0.004 | 0.005 | 0.002 | 0.004 | 0.000 | 0.001 | 0.003 | 0.002 | 0.005 | 0.001 | 0.001 | 0.003 | 0.002 | 0.000 | 0.004 | 0.003 | 0.006 | 0.074 | 0.040 | | 2 2 | 15
16 | 0.033
0.149 | 0.031
0.111 | 0.031
0.160 | 0.021
0.096 | 0.004
0.047 | 0.025
0.150 | 0.027
0.121 | 0.015
0.068 | 0.026
0.180 | 0.021
0.109 | 0.016
0.073 | 0.052
0.166 | 0.020
0.119 | 0.053
0.179 | 0.033
0.145 | 0.030
0.147 | 0.039
0.204 | 0.050
0.141 | 0.071
0.136 | 0.019
0.095 | | 2 | 17 | 0.149 | 0.111 | 0.100 | 0.096 | 0.047 | 0.130 | 0.121 | 0.008 | 0.180 | 0.109 | 0.073 | 0.100 | 0.119 | 0.179 | 0.145 | 0.147 | 0.204 | 0.141 | 0.136 | 0.093 | | 2 | 18 | 0.110 | 0.217 | 0.121 | 0.237 | 0.123 | 0.179 | 0.134 | 0.105 | 0.200 | 0.111 | 0.200 | 0.210 | 0.144 | 0.147 | 0.138 | 0.173 | 0.134 | 0.132 | 0.177 | 0.144 | | 2 | 19 | 0.092 | 0.051 | 0.117 | 0.078 | 0.154 | 0.071 | 0.072 | 0.072 | 0.072 | 0.103 | 0.118 | 0.078 | 0.069 | 0.054 | 0.064 | 0.116 | 0.083 | 0.066 | 0.104 | 0.122 | | 2 | 20 | 0.032 | 0.064 | 0.050 | 0.042 | 0.122 | 0.047 | 0.066 | 0.072 | 0.036 | 0.085 | 0.083 | 0.039 | 0.000 | 0.047 | 0.110 | 0.082 | 0.046 | 0.063 | 0.070 | 0.084 | | 2 | 21 | 0.078 | 0.055 | 0.053 | 0.049 | 0.069 | 0.049 | 0.062 | 0.064 | 0.045 | 0.083 | 0.046 | 0.047 | 0.101 | 0.054 | 0.059 | 0.043 | 0.035 | 0.080 | 0.049 | 0.063 | | 2 | 22 | 0.046 | 0.061 | 0.049 | 0.046 | 0.044 | 0.041 | 0.073 | 0.048 | 0.060 | 0.057 | 0.058 | 0.019 | 0.073 | 0.065 | 0.055 | 0.036 | 0.040 | 0.078 | 0.043 | 0.047 | | 2 | 23 | 0.034 | 0.065 | 0.073 | 0.060 | 0.055 | 0.047 | 0.064 | 0.076 | 0.057 | 0.054 | 0.063 | 0.056 | 0.057 | 0.057 | 0.055 | 0.027 | 0.046 | 0.069 | 0.042 | 0.044 | | 2 | 24 | 0.062 | 0.044 | 0.038 | 0.034 | 0.043 | 0.045 | 0.058 | 0.054 | 0.044 | 0.046 | 0.046 | 0.031 | 0.045 | 0.047 | 0.053 | 0.035 | 0.045 | 0.053 | 0.045 | 0.046 | | 2 | 25 | 0.054 | 0.047 | 0.028 | 0.055 | 0.031 | 0.043 | 0.057 | 0.075 | 0.037 | 0.048 | 0.040 | 0.033 | 0.031 | 0.039 | 0.038 | 0.034 | 0.037 | 0.038 | 0.029 | 0.028 | | 2 | 26 | 0.021 | 0.027 | 0.023 | 0.035 | 0.043 | 0.040 | 0.045 | 0.057 | 0.032 | 0.061 | 0.038 | 0.030 | 0.029 | 0.031 | 0.029 | 0.033 | 0.027 | 0.022 | 0.030 | 0.041 | | 2 | 27 | 0.019 | 0.022 | 0.021 | 0.040 | 0.037 | 0.043 | 0.025 | 0.057 | 0.018 | 0.032 | 0.023 | 0.023 | 0.032 | 0.041 | 0.027 | 0.030 | 0.023 | 0.015 | 0.014 | 0.030 | | 2 | 28 | 0.030 | 0.021 | 0.021 | 0.019 | 0.021 | 0.029 | 0.022 | 0.031 | 0.008 | 0.018 | 0.016 | 0.033 | 0.028 | 0.034 | 0.027 | 0.014 | 0.013 | 0.016 | 0.010 | 0.016 | | 2 | 29 | 0.017 | 0.025 | 0.016 | 0.010 | 0.024 | 0.027 | 0.022 | 0.029 | 0.028 | 0.013 | 0.013 | 0.004 | 0.024 | 0.023 | 0.021 | 0.014 | 0.007 | 0.011 | 0.004 | 0.018 | | 2 | 30 | 0.007 | 0.010 | 0.003 | 0.011 | 0.003 | 0.018 | 0.009 | 0.015 | 0.004 | 0.007 | 0.009 | 0.013 | 0.011 | 0.008 | 0.022 | 0.004 | 0.011 | 0.004 | 0.006 | 0.011 | | 2 | 31 | 0.000 | 0.005 | 0.003 | 0.013 | 0.004 | 0.009 | 0.003 | 0.012 | 0.004 | 0.002 | 0.004 | 0.004 | 0.016 | 0.011 | 0.003 | 0.006 | 0.003 | 0.006 | 0.006 | 0.008 | | 2
2 | 32
33 | 0.013
0.002 | 0.004
0.002 | 0.004
0.002 | 0.003
0.004 | 0.003 | 0.012
0.001 | 0.001
0.003 | 0.002
0.008 | 0.001 | 0.001
0.005 | 0.003
0.002 | 0.004
0.003 | 0.006
0.004 | 0.004
0.003 | 0.007
0.004 | 0.004
0.002 | 0.001
0.002 | 0.007
0.009 | 0.004
0.001 | 0.008
0.002 | | 2 | 34 | 0.002 | 0.002 | 0.002 | 0.004 | 0.000 | 0.001 | 0.003 | 0.000 | | 0.003 | 0.002 | 0.003 | 0.004 | 0.003 | 0.004 | 0.002 | 0.002 | 0.009 | 0.001 | 0.002 | | 2 | 35 | 0.007 | 0.001 | 0.005 | 0.001 | 0.002 | 0.000 | 0.004 | 0.000 | 0.000 | 0.005 | 0.000 | 0.007 | 0.001 | 0.003 | 0.002 | 0.003 | 0.002 | 0.003 | 0.000 | 0.003 | | 2 | 36 | 0.007 | 0.002 | 0.006 | 0.000 | 0.002 | 0.000 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.002 | 0.003 | 0.003 | 0.001 | 0.005 | 0.002 | 0.000 | | 2 | 37 | 0.008 | 0.002 | 0.017 | 0.005 | 0.003 | 0.007 | 0.005 | 0.001 | 0.022 | 0.000 | 0.002 | 0.003 | 0.003 | 0.003 | 0.004 | 0.003 | 0.002 | 0.001 | 0.001 | 0.000 | | 2 | 38 | 0.006 | 0.002 | 0.017 | 0.005 | 0.003 | 0.002 | 0.005 | 0.003 | 0.000 | 0.001 | 0.012 | 0.002 | 0.004 | 2.300 | 0.003 | 0.001 | 0.003 | | 0.000 | 0.000 | | 2 | 39 | 0.013 | 0.001 | 0.009 | 0.002 | 0.001 | | 0.004 | 0.005 | | 0.000 | 0.002 | | 0.001 | 0.000 | 0.002 | 0.001 | 0.004 | 0.002 | 0.004 | 0.001 | | 2 | 40 | 0.005 | 0.001 | 0.004 | 0.004 | 0.002 | 0.001 | 0.001 | 0.001 | | 0.001 | 0.003 | | 0.001 | 0.002 | | 0.002 | 0.006 | 0.000 | 0.003 | 0.000 | | 2 | 41 | 0.002 | 0.002 | 0.004 | | 0.001 | | 0.001 | 0.000 | | 0.001 | 0.002 | | 0.004 | 0.002 | | 0.000 | | | 0.002 | | | 2 | 42 | 0.001 | 0.002 | 0.001 | | 0.007 | | 0.001 | 0.001 | | 0.001 | 0.002 | | | 0.002 | | | | | 0.002 | 0.001 | | 2 | 43 | 0.000 | 0.000 | | | | 0.001 | | | | | 0.003 | 0.000 | | 0.002 | | | 0.001 | | | 0.000 | | 2 | 44 | | 0.001 | | | | | | | | | | 0.000 | 0.001 | | | | | | | 0.001 | | 2 | 45 | | 0.000 | | 0.001 | | | | | | | | | | | | | | 0.000 | | | | 2 | 46 | | 0.000 | 2 | 47 | Table 6 (continued): | season | TL IN | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | |--------|----------|----------------| | 3 | 4 | 0.003 | 1303 | 1304 | 1300 | 1300 | 1307 | 1300 | 1303 | 1550 | 1001 | 1002 | 1000 | 1334 | 1000 | 1330 | 1557 | 1330 | 1000 | 2000 | 2001 | | 3 | 5 | 0.006 | 3 | 6 | 0.001 | 3 | 7 | 0.012 | 0.006 | 3 | 8 | 0.016 | 0.014 | | 0.007 |
 | | | | | | 0.002 | | | | | | | | | | 3 | 9 | 0.005 | 0.008 | | 0.007 | 0.000 | | | | | | | | | | | | | | | | | 3 | 10 | 0.038 | 0.019 | 0.005 | 0.012 | 0.009 | | | | | | 0.007 | 0.001 | | | | | | | | | | 3 | 11 | 0.090 | 0.044 | 0.015 | 0.018 | 0.059 | 0.008 | 0.001 | | | | 0.006 | 0.009 | 0.002 | | | | 0.001 | | | | | 3 | 12 | 0.090 | 0.097 | 0.045 | 0.031 | 0.176 | 0.016 | | 0.008 | | | 0.012 | 0.009 | 0.002 | 0.003 | 0.003 | 0.018 | 0.009 | | 0.001 | | | 3 | 13 | 0.074 | 0.131 | 0.098 | 0.146 | 0.134 | 0.067 | 0.026 | 0.002 | | 0.013 | 0.007 | 0.025 | | 0.002 | 0.006 | 0.005 | 0.005 | 0.002 | 0.002 | | | 3 | 14 | 0.146 | 0.212 | 0.154 | 0.153 | 0.171 | 0.228 | 0.018 | 0.018 | 0.004 | 0.008 | 0.014 | 0.005 | 0.005 | 0.001 | 0.013 | 0.008 | 0.016 | 0.006 | | 0.006 | | 3 | 15 | 0.073 | 0.178 | 0.298 | 0.162 | 0.113 | 0.265 | 0.064 | 0.028 | 0.024 | 0.046 | 0.023 | 0.022 | 0.011 | 0.015 | 0.020 | 0.008 | 0.039 | 0.032 | 0.012 | 0.006 | | 3 | 16 | 0.089 | 0.163 | 0.142 | 0.133 | 0.095 | 0.239 | 0.101 | 0.024 | 0.128 | 0.168 | 0.079 | 0.073 | 0.034 | 0.045 | 0.046 | 0.035 | 0.062 | 0.065 | 0.068 | 0.043 | | 3 | 17 | 0.091 | 0.056 | 0.084 | 0.117 | 0.074 | 0.043 | 0.149 | 0.074 | 0.167 | 0.155 | 0.107 | 0.109 | 0.064 | 0.105 | 0.062 | 0.057 | 0.070 | 0.099 | 0.073 | 0.066 | | 3 | 18 | 0.021 | 0.010 | 0.013 | 0.042 | 0.042 | 0.007 | 0.143 | 0.088 | 0.105 | 0.101 | 0.122 | 0.098 | 0.111 | 0.106 | 0.068 | 0.064 | 0.057 | 0.093 | 0.090 | 0.096 | | 3
3 | 19
20 | 0.053
0.053 | 0.014
0.008 | 0.019
0.003 | 0.029
0.018 | 0.020
0.009 | 0.018
0.016 | 0.097
0.119 | 0.136
0.121 | 0.158 | 0.080
0.050 | 0.118
0.140 | 0.093
0.113 | 0.107
0.114 | 0.107
0.171 | 0.103
0.122 | 0.093
0.086 | 0.105
0.102 | 0.091
0.100 | 0.119
0.128 | 0.123
0.112 | | ა
3 | 20
21 | 0.053 | 0.006 | 0.003 | 0.018 | 0.009 | 0.016 | 0.119 | 0.121 | 0.035
0.078 | 0.060 | 0.140 | 0.113 | 0.114 | 0.171 | 0.122 | 0.086 | 0.102 | 0.100 | 0.128 | 0.112 | | 3 | 22 | 0.022 | 0.011 | 0.028 | 0.010 | 0.011 | 0.021 | 0.032 | 0.080 | 0.078 | 0.057 | 0.127 | 0.073 | 0.089 | 0.109 | 0.139 | 0.097 | 0.099 | 0.059 | 0.101 | 0.121 | | 3 | 23 | 0.017 | 0.002 | 0.036 | 0.013 | 0.019 | 0.017 | 0.043 | 0.066 | 0.023 | 0.037 | 0.069 | 0.067 | 0.059 | 0.069 | 0.108 | 0.009 | 0.093 | 0.003 | 0.079 | 0.036 | | 3 | 24 | 0.020 | 0.002 | 0.005 | 0.027 | 0.013 | 0.017 | 0.052 | 0.061 | 0.028 | 0.025 | 0.002 | 0.080 | 0.037 | 0.048 | 0.058 | 0.033 | 0.063 | 0.163 | 0.051 | 0.070 | | 3 | 25 | 0.013 | 0.009 | 0.003 | 0.017 | 0.012 | 0.013 | 0.032 | 0.055 | 0.020 | 0.056 | 0.031 | 0.058 | 0.001 | 0.045 | 0.055 | 0.043 | 0.068 | 0.051 | 0.064 | 0.030 | | 3 | 26 | 0.014 | 0.002 | 0.043 | 0.013 | 0.009 | 0.001 | 0.014 | 0.049 | 0.093 | 0.051 | 0.012 | 0.038 | 0.042 | 0.041 | 0.047 | 0.093 | 0.032 | 0.047 | 0.038 | 0.039 | | 3 | 27 | 0.003 | 0.002 | 0.004 | 0.005 | 0.007 | | 0.012 | 0.030 | 0.050 | 0.015 | 0.008 | 0.017 | 0.045 | 0.024 | 0.024 | 0.090 | 0.033 | 0.028 | 0.048 | 0.021 | | 3 | 28 | 0.005 | 0.006 | 0.002 | 0.008 | 0.002 | | 0.010 | 0.017 | 0.003 | 0.045 | 0.002 | 0.004 | 0.026 | 0.019 | 0.007 | 0.033 | 0.023 | 0.018 | 0.023 | 0.015 | | 3 | 29 | 0.002 | | 0.000 | 0.008 | 0.005 | | 0.000 | 0.016 | 0.002 | 0.024 | 0.001 | 0.002 | 0.020 | 0.016 | 0.008 | 0.013 | 0.019 | 0.027 | 0.013 | 0.001 | | 3 | 30 | | | | | 0.000 | 0.000 | 0.000 | 0.003 | | 0.005 | 0.005 | 0.006 | 0.014 | 0.002 | 0.004 | 0.012 | 0.003 | 0.015 | 0.011 | 0.005 | | 3 | 31 | | 0.011 | | | | | 0.002 | 0.002 | 0.003 | | | 0.001 | 0.002 | 0.002 | 0.003 | 0.004 | 0.010 | 0.008 | 0.002 | 0.004 | | 3 | 32 | | | 0.001 | | 0.001 | | 0.000 | | 0.001 | 0.008 | 0.002 | 0.007 | 0.005 | 0.002 | 0.002 | 0.007 | 0.000 | 0.011 | 0.005 | 0.006 | | 3 | 33 | | | 0.000 | | | | 0.000 | 0.000 | | | 0.000 | | 0.003 | 0.000 | 0.006 | 0.001 | 0.005 | 0.004 | 0.008 | 0.004 | | 3 | 34 | | | 0.000 | | | 0.009 | 0.000 | 0.004 | 0.000 | | 0.000 | 0.003 | 0.000 | 0.001 | | 0.002 | 0.004 | 0.004 | | | | 3 | 35 | | | | | | | 0.000 | | 0.001 | | | 0.000 | 0.001 | 0.001 | 0.002 | 0.003 | 0.003 | | | | | 3 | 36 | | | | | | | 0.000 | 0.000 | 0.007 | | 0.000 | 0.003 | 0.000 | 0.002 | | 0.001 | 0.002 | 0.001 | | 0.002 | | 3 | 37 | | | 0.000 | | | | 0.001 | 0.007 | 0.002 | 0.005 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.002 | 0.003 | 0.003 | 0.000 | | | 3 | 38 | | | 0.000 | | | 0.005 | 0.001 | 0.000 | 0.001 | 0.005 | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | 0.005 | 0.000 | 0.001 | 0.002 | 0.000 | | 3 | 39 | | | 0.000 | | | 0.005 | 0.000 | 0.002 | 0.001 | | 0.000 | 0.002 | 0.003 | 0.001 | 0.001 | 0.002 | | 0.003 | 0.000 | 0.003 | | 3
3 | 40
41 | | | 0.000 | | 0.000 | 0.002 | 0.000 | 0.000 | 0.004
0.001 | | 0.001 | 0.003 | 0.000 | 0.001 | 0.001
0.003 | 0.011 | 0.002 | 0.000 | 0.000 | | | ა
3 | 41 | | | 0.000 | | 0.000 | 0.006 | 0.000 | | 0.001 | | 0.000
0.002 | 0.002 | 0.000 | 0.001
0.000 | 0.003 | 0.004
0.005 | 0.002 | 0.000 | 0.000 | | | 3 | 42 | | | | | | 0.000 | 0.000 | 0.001 | 0.001 | | 0.002 | | 0.000 | 0.000 | 0.000 | 0.005 | 0.003 | 0.002 | 0.000 | | | 3 | 43 | | | | | | | | 0.001 | 0.000 | | 0.000 | | 0.001 | 0.000 | | | | | 0.000 | | | 3 | 45 | | | | | | | | | 0.000 | | | 0.002 | 0.001 | | | | 0.002 | | 0.000 | | | 3 | 46 | | | | | | | | | | | | 5.50 <u>L</u> | 5.502 | | | | 5.50 <u>L</u> | | | | | 3 | 47 | | | | | | | | | | | 0.000 | | 0.001 | | | | | | | | | 3 | 48 | Table 6 (continued): | season | TL IN | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |--------|----------|----------------|----------------|----------------|-------|----------------|----------------|----------------|----------------|----------------|-------|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | 3 | 4 | 2002 | 2000 | 2001 | 2000 | | | 2000 | | | | | | | 20.0 | 20.0 | | | 20.0 | | | | 3 | 5 | 3 | 6 | 3 | 7 | 3 | 8 | 3 | 9 | 3
3 | 10 | | | 0.004 | | | | | | | | | | | | 0.000 | | | | | | | 3 | 11 | | | 0.001 | 0.010 | | | 0.002 | | | | 0.000 | | | | 0.002 | 0.001 | 0.004 | 0.000 | | | | 3 | 12
13 | 0.003 | | 0.003 | 0.010 | 0.002 | | 0.002 | 0.002 | | | 0.002 | | | | 0.003
0.017 | 0.001
0.001 | 0.004
0.002 | 0.000 | 0.004 | 0.000 | | 3 | 14 | 0.003 | | 0.003 | 0.008 | 0.002 | 0.002 | 0.001 | 0.002 | | | | 0.009 | | 0.006 | 0.017 | 0.001 | 0.002 | 0.004 | 0.004 | 0.000 | | 3 | 15 | 0.004 | 0.026 | 0.002 | 0.008 | 0.027 | 0.002 | 0.010 | 0.020 | 0.004 | 0.010 | 0.005 | 0.003 | 0.007 | 0.000 | 0.017 | 0.010 | 0.015 | 0.004 | 0.030 | 0.022 | | 3 | 16 | 0.095 | 0.020 | 0.020 | 0.020 | 0.027 | 0.023 | 0.057 | 0.020 | 0.033 | 0.040 | 0.050 | 0.062 | 0.043 | 0.065 | 0.061 | 0.054 | 0.061 | 0.020 | 0.090 | 0.074 | | 3 | 17 | 0.099 | 0.061 | 0.093 | 0.055 | 0.039 | 0.079 | 0.080 | 0.084 | 0.095 | 0.067 | 0.105 | 0.154 | 0.086 | 0.121 | 0.074 | 0.103 | 0.141 | 0.073 | 0.054 | 0.073 | | 3 | 18 | 0.071 | 0.092 | 0.093 | 0.044 | 0.041 | 0.080 | 0.116 | 0.118 | 0.148 | 0.101 | 0.075 | 0.140 | 0.116 | 0.107 | 0.085 | 0.117 | 0.124 | 0.101 | 0.075 | 0.056 | | 3 | 19 | 0.083 | 0.092 | 0.139 | 0.095 | 0.050 | 0.111 | 0.119 | 0.077 | 0.105 | 0.105 | 0.082 | 0.091 | 0.086 | 0.113 | 0.091 | 0.117 | 0.142 | 0.112 | 0.107 | 0.049 | | 3 | 20 | 0.073 | 0.085 | 0.092 | 0.060 | 0.104 | 0.091 | 0.096 | 0.099 | 0.115 | 0.099 | 0.088 | 0.071 | 0.099 | 0.090 | 0.103 | 0.117 | 0.119 | 0.085 | 0.068 | 0.068 | | 3 | 21 | 0.116 | 0.116 | 0.105 | 0.078 | 0.090 | 0.083 | 0.094 | 0.108 | 0.096 | 0.047 | 0.129 | 0.065 | 0.090 | 0.051 | 0.088 | 0.115 | 0.092 | 0.060 | 0.072 | 0.081 | | 3 | 22 | 0.086 | 0.071 | 0.045 | 0.109 | 0.107 | 0.047 | 0.084 | 0.068 | 0.096 | 0.072 | 0.109 | 0.049 | 0.090 | 0.067 | 0.067 | 0.071 | 0.055 | 0.073 | 0.089 | 0.061 | | 3 | 23 | 0.103 | 0.089 | 0.046 | 0.092 | 0.098 | 0.053 | 0.085 | 0.066 | 0.063 | 0.092 | 0.077 | 0.093 | 0.046 | 0.058 | 0.063 | 0.081 | 0.048 | 0.078 | 0.070 | 0.081 | | 3 | 24 | 0.070 | 0.075 | 0.033 | 0.054 | 0.101 | 0.067 | 0.074 | 0.091 | 0.042 | 0.074 | 0.045 | 0.049 | 0.075 | 0.048 | 0.065 | 0.046 | 0.046 | 0.087 | 0.100 | 0.056 | | 3 | 25 | 0.065 | 0.051 | 0.039 | 0.031 | 0.060 | 0.086 | 0.060 | 0.051 | 0.043 | 0.081 | 0.058 | 0.045 | 0.035 | 0.041 | 0.061 | 0.048 | 0.043 | 0.061 | 0.055 | 0.074 | | 3 | 26 | 0.025 | 0.048 | 0.071 | 0.035 | 0.043 | 0.070 | 0.041 | 0.048 | 0.030 | 0.098 | 0.066 | 0.036 | 0.060 | 0.055 | 0.038 | 0.040 | 0.034 | 0.037 | 0.053 | 0.071 | | 3 | 27 | 0.030 | 0.033 | 0.046 | 0.036 | 0.038 | 0.031 | 0.040 | 0.043 | 0.026 | 0.045 | 0.044 | 0.031 | 0.036 | 0.038 | 0.034 | 0.017 | 0.031 | 0.062 | 0.035 | 0.065 | | 3 | 28 | 0.006 | 0.023 | 0.027 | 0.136 | 0.038 | 0.029 | 0.030 | 0.024 | 0.032 | 0.029 | 0.014 | 0.022 | 0.036 | 0.031 | 0.027 | 0.022 | 0.013 | 0.030 | 0.032 | 0.044 | | 3
3 | 29
30 | 0.015 | 0.015 | 0.007 | 0.003 | 0.024 | 0.017 | 0.004 | 0.021 | 0.029 | 0.014 | 0.014 | 0.009 | 0.016 | 0.016 | 0.020 | 0.018 | 0.006 | 0.013 | 0.023 | 0.032 | | 3 | 30
31 | 0.005
0.006 | 0.011
0.006 | 0.008
0.014 | 0.008 | 0.013
0.006 | 0.015
0.012 | 0.005
0.000 | 0.004
0.009 | 0.012
0.001 | 0.009 | 0.008 | 0.018
0.011 | 0.023
0.008 | 0.016
0.010 | 0.012
0.007 | 0.006
0.002 | 0.002
0.002 | 0.006
0.005 | 0.010
0.013 | 0.026
0.020 | | 3 | 32 | 0.000 | 0.008 | 0.000 | 0.001 | 0.008 | 0.012 | 0.000 | 0.009 | 0.001 | 0.003 | 0.009 | 0.011 | 0.008 | 0.010 | 0.007 | 0.002 | 0.002 | 0.003 | 0.013 | 0.020 | | 3 | 33 | 0.000 | 0.017 | 0.000 | 0.001 | 0.002 | 0.000 | 0.000 | 0.002 | 0.003 | 0.003 | 0.001 | 0.007 | 0.010 | 0.013 | 0.009
| 0.003 | 0.002 | 0.003 | 0.001 | 0.013 | | 3 | 34 | 0.000 | 0.004 | 0.002 | 0.000 | 0.003 | 0.002 | 0.000 | 0.001 | 0.002 | 0.000 | 0.004 | 0.004 | 0.003 | 0.010 | 0.004 | 0.002 | 0.002 | 0.002 | 0.002 | 0.010 | | 3 | 35 | 0.001 | 0.003 | 0.006 | 0.002 | 0.002 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.001 | 0.003 | 0.003 | 0.002 | 0.002 | 0.000 | 0.000 | 0.004 | 0.005 | | 3 | 36 | 0.000 | | 0.001 | | 0.001 | 0.002 | 0.001 | 0.001 | 0.003 | 0.000 | 0.001 | 0.009 | 0.004 | 0.007 | 0.005 | | 0.007 | | 0.001 | 0.005 | | 3 | 37 | 0.001 | 0.005 | 0.004 | 0.002 | 0.004 | 0.006 | | 0.004 | 0.004 | | 0.001 | | 0.002 | 0.005 | | 0.004 | 0.003 | | 0.001 | 0.003 | | 3 | 38 | 0.003 | 0.003 | 0.008 | | 0.022 | 0.007 | | 0.000 | | 0.000 | 0.007 | | 0.002 | 0.006 | 0.003 | 0.000 | 0.001 | 0.002 | 0.000 | 0.004 | | 3 | 39 | 0.001 | 0.004 | 0.001 | 0.021 | 0.046 | 0.002 | | | 0.003 | 0.001 | 0.000 | | 0.009 | 0.004 | 0.000 | | 0.003 | | 0.000 | 0.002 | | 3 | 40 | 0.000 | 0.004 | 0.007 | | | 0.003 | | 0.003 | 0.002 | 0.000 | 0.000 | | 0.006 | 0.005 | | 0.001 | 0.003 | | 0.000 | | | 3 | 41 | 0.001 | 0.003 | 0.000 | | | 0.002 | | | 0.000 | | 0.000 | 0.011 | 0.002 | 0.001 | 0.001 | | 0.001 | | 0.000 | 0.001 | | 3 | 42 | 0.002 | 0.012 | | 0.002 | 0.001 | 0.005 | | | | | 0.004 | | 0.002 | | 0.001 | | | 0.001 | | 0.000 | | 3 | 43 | 0.000 | 0.004 | | | 0.002 | | | | | | | | | | 0.003 | 0.001 | | | | | | 3 | 44 | 0.000 | | | | | | | | 0.002 | | | | | 0.002 | | | | | | | | 3 | 45 | | | | | | | | | | | | | | | 0.000 | | | | | | | 3
3 | 46
47 | | | | 0.004 | | | | | | | | | | | 0.003 | | | | | 0.000 | | 3 | 47
48 | | | | 0.001 | | | | | | | | | | | | | | | | 0.000 | | ა | 40 | 0.000 | Table 7: Natural mortality at age vector used in ASAP base model. | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | |-------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | 0.349 | 0.206 | 0.157 | 0.134 | 0.122 | 0.115 | 0.110 | 0.108 | 0.106 | 0.104 | Table 8: FAO proposed guideline for indices of productivity for exploited fish species and the parameter values and productivity score of Red Drum. | Parameter | Prod | uctivity | | Species | Score | |-----------|----------------------------|-------------|------------------|--------------------|------------------| | Parameter | Low | Medium | High | red drum | Score | | М | <0.2 | 0.2 - 0.5 | >0.5 | 0.116 | 1 | | K | <0.15 | 0.15 - 0.33 | >0.33 | 0.259 | 2 | | tmat | >8 | 3.3 - 8 | <3.3 | 6 | 2 | | tmax | >25 | 14 - 25 | <14 | 39 | 1 | | Examples | orange roughy, many sharks | cod, hake | sardine, anchovy | Red Drum Productiv | ity Score = 1.50 | Table 9: Annual sample sizes, nominal percent positive samples and CPUE of positive samples, standardized index of abundance, and corresponding coefficients of variation for Red Drum derived from the LDWF fishery-independent marine trammel net survey. Nominal CPUE and the standardized index of abundance have been normalized to their individual long-term means for comparison. | Year | n | %Pos | CPUE | IOA | CV | |------|-----|-------|------|-------|-------| | 1985 | 95 | 6.3% | 0.51 | 0.123 | 0.795 | | 1986 | 92 | 30.4% | 0.73 | 0.664 | 0.476 | | 1987 | 180 | 22.2% | 0.76 | 0.391 | 0.478 | | 1988 | 165 | 34.5% | 0.89 | 0.727 | 0.417 | | 1989 | 202 | 20.8% | 1.11 | 0.449 | 0.479 | | 1990 | 191 | 12.6% | 0.40 | 0.113 | 0.555 | | 1991 | 207 | 37.7% | 1.09 | 0.988 | 0.391 | | 1992 | 220 | 42.7% | 1.27 | 1.414 | 0.351 | | 1993 | 225 | 41.3% | 1.33 | 1.629 | 0.350 | | 1994 | 213 | 40.8% | 2.71 | 1.726 | 0.360 | | 1995 | 215 | 35.3% | 3.00 | 1.647 | 0.390 | | 1996 | 216 | 40.3% | 1.03 | 1.055 | 0.359 | | 1997 | 219 | 34.7% | 1.05 | 0.856 | 0.386 | | 1998 | 223 | 36.3% | 0.88 | 0.882 | 0.380 | | 1999 | 217 | 35.5% | 1.35 | 1.281 | 0.384 | | 2000 | 209 | 39.7% | 1.36 | 1.124 | 0.363 | | 2001 | 219 | 31.1% | 1.13 | 0.842 | 0.412 | | 2002 | 217 | 41.0% | 1.19 | 1.107 | 0.350 | | 2003 | 222 | 38.3% | 1.45 | 0.949 | 0.367 | | 2004 | 222 | 49.1% | 0.75 | 1.286 | 0.301 | | 2005 | 215 | 41.9% | 0.88 | 1.097 | 0.346 | | 2006 | 217 | 47.5% | 0.64 | 1.171 | 0.308 | | 2007 | 226 | 48.7% | 0.61 | 1.305 | 0.302 | | 2008 | 219 | 40.6% | 0.86 | 1.068 | 0.353 | | 2009 | 222 | 45.9% | 1.41 | 1.550 | 0.320 | | 2010 | 508 | 43.9% | 0.98 | 1.311 | 0.315 | | 2011 | 543 | 43.8% | 0.61 | 1.028 | 0.310 | | 2012 | 515 | 45.8% | 0.69 | 1.264 | 0.294 | | 2013 | 263 | 40.3% | 1.05 | 1.095 | 0.343 | | 2014 | 263 | 41.4% | 0.71 | 0.977 | 0.340 | | 2015 | 271 | 43.9% | 0.52 | 0.921 | 0.323 | | 2016 | 271 | 43.5% | 0.65 | 1.025 | 0.329 | | 2017 | 269 | 44.6% | 1.18 | 1.296 | 0.322 | | 2018 | 270 | 38.5% | 0.62 | 0.846 | 0.356 | | 2019 | 271 | 34.7% | 0.60 | 0.680 | 0.383 | | 2020 | 265 | 34.7% | 0.55 | 0.609 | 0.388 | | 2021 | 264 | 31.4% | 0.45 | 0.503 | 0.402 | Table 10: Annual sample sizes, nominal percent positive samples and CPUE of positive samples, standardized index of abundance, and corresponding coefficients of variation for Red Drum derived from the LDWF fishery-independent bottom long line survey. Nominal CPUE and the standardized index of abundance have been normalized to their individual long-term means for comparison. | Year | n | %Pos | CPUE | IOA | CV | |------|----|-------|------|-------|-------| | 2015 | 79 | 46.8% | 0.85 | 0.902 | 0.236 | | 2016 | 74 | 24.3% | 1.36 | 0.800 | 0.354 | | 2017 | 91 | 47.3% | 1.16 | 1.329 | 0.224 | | 2018 | 96 | 38.5% | 0.97 | 0.889 | 0.254 | | 2019 | 88 | 46.6% | 1.46 | 1.639 | 0.229 | | 2020 | 25 | 36.0% | 0.72 | 0.901 | 0.427 | | 2021 | 80 | 35.0% | 0.48 | 0.540 | 0.283 | Table 11: Seasonal probabilities of age given length used in age assignments of Red Drum recreational and inshore commercial fishery landings from 1982-2001. Seasons represent January-April (season1), May-August (season 2), and September-December (season 3). | Seasor | ո 1 (Jan- <i>l</i> | April) | | | | | | | | | Seasor | 1 2 (May- | Aug) | | | | | | | | | |--------|--------------------|--------|-------|-------|-------|-------|-------|-------|-------|---------|--------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | TL_in | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | TL_in | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 15 | 0.00 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 15 | 0.01 | 0.95 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 16 | 0.00 | 0.83 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16 | 0.00 | 0.94 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.00 | 0.69 | 0.30 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 17 | 0.00 | 0.89 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.00 | 0.49 | 0.49 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 18 | 0.00 | 0.82 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 19 | 0.00 | 0.27 | 0.68 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 19 | 0.00 | 0.70 | 0.29 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 20 | 0.00 | 0.12 | 0.78 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20 | 0.00 | 0.53 | 0.44 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | 0.00 | 0.04 | 0.79 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 21 | 0.00 | 0.35 | 0.59 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 22 | 0.00 | 0.01 | 0.73 | 0.25 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 22 | 0.00 | 0.19 | 0.69 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | 0.00 | 0.00 | 0.62 | 0.35 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 23 | 0.00 | 0.09 | 0.71 | 0.20 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | 0.00 | 0.00 | 0.48 | 0.46 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 24 | 0.00 | 0.04 | 0.65 | 0.30 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 25 | 0.00 | 0.00 | 0.33 | 0.55 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 25 | 0.00 | 0.01 | 0.54 | 0.40 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 26 | 0.00 | 0.00 | 0.21 | 0.58 | 0.21 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 26 | 0.00 | 0.00 | 0.41 | 0.49 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 27 | 0.00 | 0.00 | 0.12 | 0.55 | 0.31 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 27 | 0.00 | 0.00 | 0.28 | 0.53 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 28 | 0.00 | 0.00 | 0.06 | 0.46 | 0.41 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 28 | 0.00 | 0.00 | 0.17 | 0.52 | 0.29 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 29 | 0.00 | 0.00 | 0.03 | 0.35 | 0.47 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | 29 | 0.00 | 0.00 | 0.10 | 0.45 | 0.39 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 33 | 0.00 | 0.00 | 0.00 | 0.03 |
0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | Table 11 (continued): | _ | _ | | - \ | |--------|-----|--------|---------| | Season | -34 | (Sent- | 1)ec 1 | | Seasor | า 3 (Sept | -Dec) | | | | | | | | | |--------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | TL_in | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 15 | 0.62 | 0.37 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 16 | 0.34 | 0.64 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.13 | 0.83 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.04 | 0.89 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 19 | 0.01 | 0.86 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 20 | 0.00 | 0.78 | 0.21 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | 0.00 | 0.67 | 0.32 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 22 | 0.00 | 0.52 | 0.44 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | 0.00 | 0.36 | 0.56 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | 0.00 | 0.22 | 0.63 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 25 | 0.00 | 0.12 | 0.63 | 0.25 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 26 | 0.00 | 0.06 | 0.56 | 0.35 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 27 | 0.00 | 0.02 | 0.45 | 0.45 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 28 | 0.00 | 0.01 | 0.33 | 0.50 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 29 | 0.00 | 0.00 | 0.21 | 0.50 | 0.27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.92 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | Table 12: Annual seasonal probabilities of age given length used in age assignments of recreational Red Drum landings 2002-2013. Probabilities of age given length from Table 11 are substituted where the annual row sample sizes (total column) are <10. Seasons represent January-April (season1), May-August (season 2), and September-December (season 3). | 2002 (s | eason 1) | | | | | | | | | | | 2002 (s | eason 2) | | | | | | | | | | | |----------|----------|-------|--------------|--------------|--------------|-------|-------|-------|-------|--------------|-------|----------|----------|--------------|--------------|--------------|-------|-------|-------|-------|-------|---------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 15 | 0.00 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 15 | 0.01 | 0.95 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | | 16 | 0.00 | 0.83 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 16 | | 0.92 | 0.08 | | | | | | | | 24 | | 17 | 0.00 | 0.69 | 0.30 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | | 0.80 | 0.17 | 0.03 | | | | | | | 30 | | 18 | 0.00 | 0.49 | 0.49 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | | 0.93 | 0.07 | | | | | | | | 27 | | 19 | 0.00 | 0.27 | 0.68 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 19 | | 0.85 | 0.15 | | | | | | | | 13 | | 20 | 0.00 | 0.12 | 0.78 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 20 | | 0.47 | 0.53 | 0.44 | | | | | | | 17 | | 21 | 0.00 | 0.04 | 0.79 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | | 0.21 | 0.68 | 0.11 | | | | | | | 19 | | 22 | 0.00 | 0.01 | 0.73
0.62 | 0.25 | 0.01
0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 22 | | 0.11
0.13 | 0.78
0.87 | 0.11 | | | | | | | 18 | | 23
24 | 0.00 | 0.00 | 0.62 | 0.35 | 0.03 | 0.00 | | | 0.00 | 0.00 | | 23
24 | 0.00 | | | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 15
9 | | 24
25 | 0.00 | 0.00 | 0.48 | 0.46
0.55 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | | 25 | 0.00 | 0.04 | 0.65
0.63 | 0.30
0.38 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16 | | 26 | 0.00 | 0.00 | 0.33 | 0.58 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 26 | 0.00 | 0.00 | 0.03 | 0.38 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | | 27 | 0.00 | 0.00 | 0.12 | 0.55 | 0.31 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 27 | 0.00 | 0.00 | 0.28 | 0.53 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | | 28 | 0.00 | 0.00 | 0.06 | 0.46 | 0.41 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | | 28 | 0.00 | 0.00 | 0.17 | 0.67 | 0.10 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 12 | | 29 | 0.00 | 0.00 | 0.03 | 0.35 | 0.47 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | | 29 | | | 0.31 | 0.69 | | 0.17 | | | | | 13 | | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 5 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 1 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | 4 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 1 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 2 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 2 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 2 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | |
38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 3 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 2 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 1 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 2 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2002 (s | eason 3) | | | | | | | | | | | 2003 (s | eason 1) | | | | | | | | | | | |----------|--------------|--------------|--------------|--------------|--------------|--------------|-------|-------|--------------|--------------|--------|----------|----------|--------------|--------------|--------------|--------------|--------------|--------------|-------|-------|--------------|-------| | _TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13
14 | 0.92
0.82 | 0.07
0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | | 13
14 | 0.00 | 0.98
0.96 | 0.02
0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 1 | | 15 | 0.62 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5 | 15 | 0.00 | 0.90 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | | 16 | 0.66 | 0.34 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 29 | 16 | 0.70 | 0.30 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20 | | 17 | 0.65 | 0.35 | | | | | | | | | 26 | 17 | 0.68 | 0.16 | 0.16 | | | | | | | | 19 | | 18 | 0.40 | 0.60 | | | | | | | | | 15 | 18 | 0.23 | 0.46 | 0.31 | | | | | | | | 13 | | 19 | | 0.94 | 0.06 | | | | | | | | 17 | 19 | 0.17 | | 0.83 | | | | | | | | 12 | | 20 | 0.05 | 0.86 | 0.10 | | | | | | | | 21 | 20 | 0.08 | | 0.92 | | | | | | | | 12 | | 21 | | 0.87 | 0.13 | | | | | | | | 30 | 21 | 0.10 | 0.05 | 0.81 | 0.05 | | | | | | | 21 | | 22 | 0.04 | 0.58 | 0.38 | | | | | | | | 26 | 22 | | | 0.94 | 0.06 | | | | | | | 16 | | 23 | | 0.54 | 0.39 | 0.07 | | | | | | | 28 | 23 | 0.00 | 0.00 | 0.62 | 0.35 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4 | | 24 | | 0.29 | 0.47 | 0.24 | | | | | | | 17 | 24 | | | 0.63 | 0.31 | 0.06 | | | | | | 16 | | 25 | | 0.07 | 0.53 | 0.40 | | | | | | | 15 | 25 | | | 0.40 | 0.60 | | | | | | | 10 | | 26 | 0.00 | 0.06 | 0.56 | 0.35 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9
5 | 26 | | | 0.18 | 0.64 | 0.18 | | | | | | 11 | | 27
28 | 0.00 | 0.02 | 0.45
0.33 | 0.45
0.50 | 0.08
0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 27
28 | 0.00 | 0.00 | 0.20 | 0.60
0.46 | 0.20
0.41 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 10 | | 29 | 0.00 | 0.01
0.00 | 0.33 | 0.50 | 0.16 | 0.00
0.01 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 3 | 29 | 0.00 | 0.00 | 0.06
0.03 | 0.46 | 0.47 | 0.06
0.15 | 0.00
0.01 | 0.00 | 0.00 | 0.00
0.00 | 2 | | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.27 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 30 | 0.00 | 0.00 | 0.03 | 0.33 | 0.46 | 0.13 | 0.01 | 0.00 | 0.00 | 0.00 | _ | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 4 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 1 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | - | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | 1 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 1 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.92 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | 1 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 2 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 1 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | , | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 2 | | 42
43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.01 | 0.99
0.99 | 1 | 42
43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00
1.00 | 3 | | 43
44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43
44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | ' | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | L | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | L | Table 12 (continued): | 2003 (s | eason 2) | | | | | | | | | | | 2003 (s | eason 3) | | | | | | | | | | | |----------|----------|--------------|--------------|-------|-------|-------|--------------|--------------|--------------|--------------|----------|----------|--------------|--------------|--------------|-------|-------|--------------|--------------|--------------|--------------|--------------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | İ | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | İ | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 . | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 1 | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 15 | 0.01 | 0.95 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | 15 | 0.62 | 0.37 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | | 16 | | 0.95 | 0.05 | | | | | | | | 19 | 16 | 0.34 | 0.64 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | | 17
18 | 0.03 | 0.97
0.83 | 0.03
0.14 | | | | | | | | 36
29 | 17
18 | 0.20
0.11 | 0.73
0.85 | 0.07
0.04 | | | | | | | | 15
27 | | 19 | 0.03 | 0.63 | 0.14 | | | | | | | | 25 | 19 | 0.11 | 0.83 | 0.04 | | | | | | | | 35 | | 20 | | 0.76 | 0.62 | | | | | | | | 26 | 20 | 0.00 | 0.63 | 0.31 | 0.06 | | | | | | | 16 | | 21 | | 0.33 | 0.73 | 0.04 | | | | | | | 26 | 21 | | 0.69 | 0.23 | 0.08 | | | | | | | 26 | | 22 | | 0.13 | 0.77 | 0.10 | | | | | | | 31 | 22 | | 0.56 | 0.40 | 0.04 | | | | | | | 25 | | 23 | | 0.10 | 0.59 | 0.31 | | | | | | | 29 | 23 | | 0.45 | 0.45 | 0.09 | | | | | | | 22 | | 24 | | | 0.35 | 0.65 | | | | | | | 26 | 24 | | 0.20 | 0.68 | 0.12 | | | | | | | 25 | | 25 | | 0.03 | 0.35 | 0.61 | | | | | | | 31 | 25 | | 0.21 | 0.56 | 0.21 | 0.03 | | | | | | 39 | | 26 | | | 0.27 | 0.65 | 0.08 | | | | | | 26 | 26 | | 0.12 | 0.41 | 0.47 | | | | | | | 17 | | 27 | | | 0.18 | 0.71 | 0.12 | | | | | | 17 | 27 | | 0.10 | 0.45 | 0.35 | 0.10 | | | | | | 20 | | 28 | 0.00 | 0.00 | 0.17 | 0.52 | 0.29 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | 28 | | 0.10 | 0.30 | 0.60 | | | | | | | 10 | | 29 | 0.00 | 0.00 | 0.10 | 0.45 | 0.39 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 29 | 0.00 | 0.00 | 0.21 | 0.50 | 0.27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 5 | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 3 | | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 3 | 31 | 0.00 | 0.00 | 0.06 |
0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 1 | | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 4 | | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | 4 | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | 2 | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | 1 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 1 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | 2 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | 1 | | 37
38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.01 | 0.02
0.01 | 0.03
0.02 | 0.93
0.96 | 3 | 37
38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.02
0.01 | 0.02
0.02 | 0.03
0.02 | 0.92
0.95 | 2 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.96 | 1 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.95 | 3 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | ' | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.98 | ١ | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | İ | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 3 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | ' | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | l ĭ | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 1 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | · | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | Table 12 (continued): | 2004 (se | eason 1) | | | | | | | | | | | 2004 (s | eason 2) | | | | | | | | | | | |----------|----------|-------|--------------|-------|-------|-------|-------|--------------|--------------|--------------|----------|----------|----------|--------------|--------------|-------|-------|-------|-------|-------|--------------|--------------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | _TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 15 | 0.00 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 15 | | 0.81 | 0.19 | | | | | | | | 16 | | 16 | 0.40 | 0.47 | 0.13 | | | | | | | | 15 | 16 | | 0.89 | 0.11 | | | | | | | | 37 | | 17 | 0.54 | 0.31 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 13 | 17 | | 0.98 | 0.02 | | | | | | | | 51 | | 18
19 | 0.00 | 0.49 | 0.49 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | 18
19 | | 0.98 | 0.02
0.17 | | | | | | | | 48 | | 20 | | | 1.00
1.00 | | | | | | | | 12
10 | 20 | | 0.83
0.71 | 0.17 | 0.05 | | | | | | | 35
21 | | 20
21 | 0.00 | 0.04 | 0.79 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 20 | | 0.71 | 0.24 | 0.05 | 0.06 | | | | | | 17 | | 22 | 0.00 | 0.04 | 0.79 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 13 | 22 | | 0.24 | 0.03 | 0.00 | 0.00 | | | | | | 15 | | 23 | | | 0.79 | 0.16 | 0.05 | | | | | | 19 | 23 | | 0.09 | 0.55 | 0.36 | | | | | | | 11 | | 24 | | | 0.50 | 0.50 | 0.00 | | | | | | 10 | 24 | | 0.00 | 0.56 | 0.31 | 0.13 | | | | | | 16 | | 25 | | | 0.12 | 0.88 | | | | | | | 17 | 25 | | | 0.50 | 0.50 | 00 | | | | | | 16 | | 26 | | | 0.18 | 0.65 | 0.18 | | | | | | 17 | 26 | | | 0.38 | 0.50 | 0.13 | | | | | | 16 | | 27 | | | 0.08 | 0.77 | 0.15 | | | | | | 13 | 27 | | | 0.18 | 0.65 | 0.18 | | | | | | 17 | | 28 | | | 0.36 | 0.36 | 0.27 | | | | | | 11 | 28 | 0.00 | 0.00 | 0.17 | 0.52 | 0.29 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | | 29 | 0.00 | 0.00 | 0.03 | 0.35 | 0.47 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | 4 | 29 | 0.00 | 0.00 | 0.10 | 0.45 | 0.39 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 5 | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 5 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 1 | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 6 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 2 | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 1 | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 3 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | 2 | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 1 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 2 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | • | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | 2 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 4 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 2 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 1 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.01
0.01 | 0.98 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01
0.01 | 0.97 | 2 | | 40
41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99
0.99 | 2 | 40
41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98
0.99 | 1 1 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 2 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 2 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | Table 12 (continued): | | eason 3) | | | | | | | | | | | 2005 (s | eason 1) | | | | | | | | | | | |-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|---------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 15 | 0.62 | 0.37 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 15 | 0.00 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5 | | 16 | 0.45 | 0.55 | | | | | | | | | 22 | 16 | | 1.00 | | | | | | | | | 23 | | 17 | 0.21 | 0.79 | | | | | | | | | 28 | 17 | | 0.95 | 0.05 | | | | | | | | 20 | | 18 | 0.03 | 0.95 | 0.03 | | | | | | | | 38 | 18 | | 0.64 | 0.36 | | | | | | | | 14 | | 19 | | 1.00 | | | | | | | | | 37 | 19 | 0.00 | 0.27 | 0.68 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | | 20 | | 0.91 | 0.06 | | 0.03 | | | | | | 34 | 20 | | 0.04 | 0.92 | 0.04 | | | | | | | 24 | | 21 | | 0.95 | 0.05 | | | | | | | | 39 | 21 | | | 0.91 | 0.09 | | | | | | | 23 | | 22 | | 0.79 | 0.21 | | | | | | | | 34 | 22 | | | 1.00 | | | | | | | | 29 | | 23 | | 0.76 | 0.24 | | | | | | | | 17 | 23 | | | 0.90 | 0.10 | | | | | | | 21 | | 24 | | 0.22 | 0.61 | 0.17 | | | | | | | 18 | 24 | | | 0.71 | 0.29 | | | | | | | 14 | | 25 | | 0.11 |
0.56 | 0.33 | | | | | | | 18 | 25 | | 0.07 | 0.40 | 0.53 | | | | | | | 15 | | 26 | | | 0.55 | 0.30 | 0.15 | | | | | | 20 | 26 | | | 0.36 | 0.36 | 0.18 | 0.09 | | | | | 11 | | 27 | | 0.06 | 0.61 | 0.28 | 0.06 | | | | | | 18 | 27 | | | 0.08 | 0.46 | 0.38 | 0.08 | | | | | 13 | | 28 | 0.00 | 0.01 | 0.33 | 0.50 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7 | 28 | 0.00 | 0.00 | 0.06 | 0.46 | 0.41 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 29 | 0.00 | 0.00 | 0.21 | 0.50 | 0.27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 29 | 0.00 | 0.00 | 0.03 | 0.35 | 0.47 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | 7 | | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 1 | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 2 | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 3 | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 2 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 3 | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 1 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 2 | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | 1 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | 3 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 1 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | 1 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.92 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 3 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 1 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | Table 12 (continued): | 2005 (se | eason 2) | | | | | | | | | | | 2005 (s | eason 3) | | | | | | | | | | | |----------|----------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------|----------|----------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | | 15 | 0.01 | 0.95 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 15 | 0.62 | 0.37 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5 | | 16 | | 1.00 | | | | | | | | | 14 | 16 | 1.00 | | | | | | | | | | 17 | | 17 | 0.03 | 0.94 | | 0.03 | | | | | | | 32 | 17 | 0.80 | 0.10 | 0.10 | | | | | | | | 10 | | 18 | 0.13 | 0.84 | 0.03 | | | | | | | | 31 | 18 | 0.04 | 0.89 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 19 | | 0.88 | 0.13 | | | | | | | | 40 | 19 | 0.43 | 0.57 | | | | | | | | | 14 | | 20 | | 0.85 | 0.15 | | | | | | | | 20 | 20 | 0.14 | 0.77 | 0.09 | | | | | | | | 22 | | 21 | | 0.60 | 0.40 | | | | | | | | 20 | 21 | 0.06 | 0.88 | | 0.06 | | | | | | | 17 | | 22 | | 0.11 | 0.89 | | | | | | | | 18 | 22 | | 0.82 | 0.18 | | | | | | | | 33 | | 23 | | | 0.84 | 0.16 | | | | | | | 19 | 23 | | 0.59 | 0.41 | | | | | | | | 27 | | 24 | | 0.10 | 0.85 | 0.05 | | | | | | | 20 | 24 | 0.06 | 0.59 | 0.35 | | | | | | | | 17 | | 25 | | | 0.59 | 0.36 | 0.05 | | | | | | 22 | 25 | | 0.41 | 0.55 | 0.05 | | | | | | | 22 | | 26 | | | 0.43 | 0.43 | 0.07 | 0.07 | | | | | 14 | 26 | | 0.23 | 0.77 | | | | | | | | 13 | | 27 | | | 0.13 | 0.69 | 0.13 | 0.06 | | | | | 16 | 27 | 0.00 | 0.10 | 0.60 | 0.30 | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10 | | 28 | 0.00 | 0.00 | 0.11 | 0.74 | 0.11 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 19 | 28 | 0.00 | 0.01 | 0.33 | 0.50 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4 | | 29 | 0.00 | 0.00 | 0.10 | 0.45 | 0.39 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 29 | 0.00 | 0.00 | 0.21 | 0.50 | 0.27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | | 30 | 0.00 | 0.00 | 0.15 | 0.38 | 0.08 | 0.31 | 0.08 | 0.00 | 0.04 | 0.00 | 13 | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | _ | | 31 | 0.00 | 0.00 | 0.02
0.01 | 0.21
0.09 | 0.39
0.25 | 0.24
0.27 | 0.05
0.10 | 0.02
0.04 | 0.01
0.02 | 0.06
0.22 | 2
5 | 31
32 | 0.00 | 0.00 | 0.06 | 0.29
0.15 | 0.40
0.29 | 0.14 | 0.03 | 0.01
0.03 | 0.01
0.02 | 0.06
0.22 | 2 | | 32
33 | 0.00 | 0.00 | 0.00 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | Э | 32 | 0.00 | 0.00 | 0.02
0.01 | 0.15 | 0.29 | 0.21
0.18 | 0.07
0.09 | 0.03 | 0.02 | 0.22 | , i | | 33
34 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 4 | 33
34 | 0.00 | 0.00 | 0.00 | 0.03 | 0.14 | 0.10 | 0.09 | 0.05 | 0.03 | 0.43 | 3 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 4 | 35 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.10 | 0.05 | 0.03 | 0.04 | 0.80 | 1 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.04 | 0.89 | 1 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.04 | 0.04 | 0.88 | 2 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.03 | 2 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.03 | 0.92 | 1 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | 1 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 1 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.97 | | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | ' | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.98 | 3 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | Table 12 (continued): | | eason 1) | | | | | | | | | | | | eason 2) | | | | | | | | | | | |----------|----------|-------|-------|-------|-------|-------|--------------|-------|--------------|--------------|--------|----------|----------|-------|-------|-------|-------|-------|-------|--------------|--------------|--------------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 15 | 0.00 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7 | 15 | 0.01 | 0.95 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 16 | | 1.00 | | | | | | | | | 38 | 16 | 0.00 | 0.94 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | | 17 | | 1.00 | | | | | | | | | 41 | 17 | | 1.00 | | | | | | | | | 25 | | 18 | | 1.00 | | | | | | | | | 22 | 18 | 0.03 | 0.95 | 0.03 | | | | | | | | 37 | | 19 | | 1.00 | | | | | | | | | 12 | 19 | | 1.00 | | | | | | | | | 48 | | 20 | | 0.58 | 0.42 | | | | | | | | 12 | 20 | | 1.00 | | | | | | | | | 39 | | 21 | 0.00 | 0.04 | 0.79 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 21 | | 1.00 | | | | | | | | | 28 | | 22 | 0.00 | 0.01 | 0.73 | 0.25 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5 | 22 | | 0.90 | 0.10 | | | | | | | | 20 | | 23 | 0.00 | 0.00 | 0.62 | 0.35 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | 23 | | 0.83 | 0.17 | | | | | | | | 12 | | 24 | | | 0.82 | 0.18 | | | | | | | 11 | 24 | | 0.22 | 0.72 | 0.06 | | | | | | | 18 | | 25 | | | 0.58 | 0.42 | | | | | | | 19 | 25 | | 0.04 | 0.96 | | | | | | | | 24 | | 26 | | | 0.38 | 0.46 | 0.15 | | | | | | 13 | 26 | | | 0.95 | 0.05 | | | | | | | 20 | | 27 | | | 0.21 | 0.71 | | | 0.07 | | | | 14 | 27 | | | 0.40 | 0.60 | | | | | | | 15 | | 28 | | | 0.18 | 0.73 | 0.09 | | | | | | 11 | 28 | | | 0.60 | 0.30 | | 0.10 | | | | | 10 | | 29 | 0.00 | 0.00 | 0.03 | 0.35 | 0.47 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | 6 | 29 | 0.00 | 0.00 | 0.10 | 0.45 | 0.39 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 6 | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 8 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 2 | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 3 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 2 | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | 1 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 80.0 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 1 | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 1 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | 1 | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 1
1 | 36
37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 1 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.02 | 0.02 | 0.94 | 1 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03
0.02 | 0.93
0.96 | ' | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02
0.01 | 0.97 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01
0.01 | 0.02 | 0.96 | 4 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | 0.01 | | 0.98 | 1 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | 40
41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.01 | 0.99 | 1 | 40
41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.01 | 0.98
0.99 | ' | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99
1.00 | 1 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 4 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | ' | | 43
44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43
44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2006 (se | eason 3) | | | | | | | | | | | 2007 (s | eason 1) | | | | | | | | | | | |----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|---------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | | 15 | 0.90 | | 0.10 | | | | | | | | 10 | 15 | 0.00 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7 | | 16 | 1.00 | | | | | | | | | | 17 | 16 | | 1.00 | | | | | | | | | 24 | | 17 | 0.93 | 0.07 | | | | | | | | | 14 | 17 | | 0.95 | 0.05 | | | | | | | | 19 | | 18 | 0.33 | 0.67 | | | | | | | | | 15 | 18 | | 0.64 | 0.36 | | | | | | | | 11 | | 19 | 0.08 | 0.92 | | | | | | | | | 24 | 19 | 0.00 | 0.27 | 0.68 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7 | | 20 | | 0.98 | | 0.02 | | | | | | | 48 | 20 | | 0.08 | 0.92 | | | | | | | | 13 | | 21 | | 0.96 | 0.04 | | | | | | | | 53 | 21 | 0.00 | 0.04 | 0.79 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | | 22 | | 0.94 | 0.06 | | | | | | | | 49 | 22 | | | 1.00 | | | | | | | | 19 | | 23 | | 0.88 | 0.09 | 0.03 | | | | | | | 33 | 23 | | | 0.88 | 0.12 | | | | | | | 26 | | 24 | | 0.75 | 0.25 | | | | | | | | 24 | 24 | | | 1.00 | | | | | | | | 15 | | 25 | | 0.38 | 0.46 | 0.15 | | | | | | | 26 | 25 | | | 0.71 | 0.24 | 0.06 | | | | | | 17 | | 26 | | 0.21 | 0.63 | 0.16 | | | | | | | 19 | 26 | | | 0.58 | 0.42 | | | | | | | 12 | | 27 | | | 0.72 | 0.28 | | | | | | | 18 | 27 | 0.00 | 0.00 | 0.12 | 0.55 | 0.31 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | | 28 | | | 0.80 | 0.20 | | | | | | | 20 | 28 | | | 0.21 | 0.57 | 0.21 | | | | | | 14 | | 29 | | 0.09 | 0.55 | 0.27 | 0.09 | | | | | | 11 | 29 | | | | 0.50 | 0.30 | 0.10 | | | | 0.10 | 10 | | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 6 | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 5 | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 1 | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 1 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 2 | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 2 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | 1 | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 3 | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 1 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | 1 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 1 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.92 | 3 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 3 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 2 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 1 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2007 (se | eason 2) | | | | | | | | | | | 2007 (s | eason 3) | | | | | | | | | | | |----------|----------|-------|--------------|--------------|--------------|-------|--------------|-------|-------|--------------|---------|----------|----------|-------|--------------|--------------|--------------|--------------|--------------
--------------|-------|---------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 15 | 0.01 | 0.95 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5 | 15 | 0.80 | 0.10 | 0.10 | | | | | | | | 10 | | 16 | | 0.95 | 0.05 | | | | | | | | 39 | 16 | 0.41 | 0.59 | | | | | | | | | 22 | | 17 | | 0.98 | 0.02 | | | | | | | | 48 | 17 | 0.07 | 0.93 | | | | | | | | | 30 | | 18 | | 0.97 | 0.03 | | | | | | | | 30 | 18 | 0.06 | 0.90 | 0.04 | | | | | | | | 50 | | 19 | | 1.00 | | | | | | | | | 23 | 19 | | 0.98 | 0.02 | | | | | | | | 48 | | 20 | | 0.81 | 0.16 | 0.03 | | | | | | | 31 | 20 | 0.02 | 0.96 | 0.02 | | | | | | | | 48 | | 21 | | 0.67 | 0.33 | | | | | | | | 15 | 21 | | 0.98 | 0.02 | | | | | | | | 43 | | 22 | 0.00 | 0.19 | 0.69 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 22 | | 0.78 | 0.22 | | | | | | | | 37 | | 23 | | 0.13 | 0.75 | 0.06 | 0.06 | | | | | | 16 | 23 | | 0.65 | 0.35 | | | | | | | | 23 | | 24 | | 0.13 | 0.87 | | | | | | | | 15 | 24 | | 0.33 | 0.67 | | | | | | | | 18 | | 25 | | | 0.95 | 0.05 | | | | | | | 19 | 25 | | 0.13 | 0.83 | 0.04 | | | | | | | 23 | | 26 | | 0.05 | 0.78 | 0.22 | 0.05 | | | | | | 23 | 26 | | 0.00 | 0.95 | 0.05 | 0.04 | | | | | | 21 | | 27 | | 0.05 | 0.38 | 0.52 | 0.05 | | | | | | 21 | 27 | | 0.08 | 0.79 | 0.08 | 0.04 | | | | | | 24
14 | | 28 | | | 0.30 | 0.70 | 0.45 | | 0.00 | | | | 10 | 28
29 | | 0.00 | 0.86 | 0.14 | 0.40 | | | | | | | | 29 | 0.00 | 0.00 | 0.23 | 0.54
0.34 | 0.15
0.45 | 0.14 | 0.08
0.02 | 0.00 | 0.00 | 0.01 | 13
9 | 30 | 0.00 | 0.09 | 0.45
0.12 | 0.27 | 0.18 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 11 | | 30
31 | 0.00 | 0.00 | 0.05
0.02 | 0.34 | 0.43 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01
0.06 | 6 | 31 | 0.00 | 0.00 | 0.12 | 0.42
0.29 | 0.38
0.40 | 0.05
0.14 | 0.01
0.03 | 0.00
0.01 | 0.00 | 0.01 | 4 | | 32 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.03 | 0.02 | 0.01 | 0.00 | 5 | 32 | 0.00 | 0.00 | 0.00 | 0.25 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.00 | 3 | | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.23 | 0.18 | 0.10 | 0.04 | 0.02 | 0.46 | 1 | 33 | 0.00 | 0.00 | 0.02 | 0.15 | 0.23 | 0.18 | 0.09 | 0.05 | 0.02 | 0.45 | 2 | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.48 | 3 | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | 4 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 6 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | 4 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 2 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | 4 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 6 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.92 | 5 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 5 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | 4 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | Ů | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 6 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 2 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 3 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 5 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | Table 12 (continued): | 2008 (se | eason 1) | | | | | | | | | | | 2008 (s | eason 2) | | | | | | | | | | | |----------|----------|-------|--------------|--------------|-------|-------|-------|-------|-------|---------|----------|----------|----------|-------|--------------|--------------|-------|-------|-------|-------|-------|---------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5 | | 15 | | 1.00 | | | | | | | | | 20 | 15 | | 0.94 | 0.06 | | | | | | | | 18 | | 16 | | 1.00 | | | | | | | | | 35 | 16 | | 0.96 | 0.04 | | | | | | | | 71 | | 17 | | 0.88 | 0.13 | | | | | | | | 32 | 17 | | 0.87 | 0.13 | | | | | | | | 55 | | 18 | | 0.38 | 0.63 | | | | | | | | 16 | 18 | | 0.81 | 0.19 | | | | | | | | 37 | | 19 | | 0.05 | 0.95 | | | | | | | | 22 | 19 | 0.03 | 0.62 | 0.35 | | | | | | | | 34 | | 20 | | 0.02 | 0.98 | | | | | | | | 42 | 20 | | 0.26 | 0.74 | 0.00 | | | | | | | 39 | | 21 | | | 1.00 | 0.05 | | | | | | | 35 | 21 | | 0.03 | 0.93 | 0.03 | | | | | | | 29 | | 22 | | | 0.95 | 0.05 | | | | | | | 40 | 22 | | 0.07 | 0.91 | 0.02 | | | | | | | 46 | | 23
24 | | | 0.94
0.82 | 0.06
0.18 | | | | | | | 36
33 | 23
24 | | 0.11 | 0.86
0.89 | 0.03
0.11 | | | | | | | 37
27 | | 25
25 | | | 0.82 | 0.18 | | | | | | | 16 | 25 | | 0.04 | 0.89 | 0.11 | 0.04 | | | | | | 23 | | 26 | 0.00 | 0.00 | 0.30 | 0.58 | 0.21 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 26 | | 0.04 | 0.78 | 0.13 | 0.04 | | | | | | 23 | | 27 | 0.00 | 0.00 | 0.08 | 0.85 | 0.21 | 0.01 | 0.00 | 0.00 | 0.08 | 0.00 | 13 | 27 | | 0.00 | 0.43 | 0.80 | 0.07 | | | | | | 15 | | 28 | | | 0.00 | 0.83 | 0.17 | | | | 0.00 | | 12 | 28 | | | 0.13 | 0.60 | 0.10 | | | | | | 10 | | 29 | | | | 0.85 | 0.15 | | | | | | 13 | 29 | | | 0.20 | 0.67 | 0.13 | | | | | | 15 | | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 6 | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 7 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 3 | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 7 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 2 | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | 1 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 2 | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 2 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | 1 | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | 2 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 1 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 3 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 1 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 3 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | 1 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 2 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 2 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 3 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 2 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 1 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 2 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2008 (s | eason 3) | | | | | | | | | | | 2009 (s | eason 1) | | | | | | | | | | | |----------|--------------|--------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|----------|----------|--------------|--------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 15 | 0.62
0.59 | 0.37
0.38 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9
29 | 15
16 | | 0.92
0.98 | 0.04
0.02 | 0.04 | | | | | | | 26 | | 16
17 | 0.59 | 0.36 | 0.03 | | 0.03 | | | | | | 36 | 17 | | 0.96 | 0.02 | | | | | | | | 54 | | 18 | 0.19 | 0.76 | 0.03 | | | | | | | | 37 | 18 | | 0.53 | 0.16 | 0.07 | | | | | | | 32
15 | | 19 | 0.03 | 0.86 | 0.14 | | | | | | | | 44 | 19 | | 0.09 | 0.40 | 0.07 | | | | | | | 22 | | 20 | | 0.81 | 0.19 | | | | | | | | 48 | 20 | | 0.06 | 0.87 | 0.06 | | | | | | | 31 | | 21 | | 0.88 | 0.12 | | | | | | | | 41 | 21 | | 0.00 | 0.89 | 0.11 | | | | | | | 35 | | 22 | | 0.66 | 0.34 | | | | | | | | 35 | 22 | | | 0.84 | 0.16 | | | | | | | 37 | | 23 | | 0.32 | 0.66 | 0.03 | | | | | | | 38 | 23 | | | 0.74 | 0.26 | | | | | | | 39 | | 24 | | 0.15 | 0.82 | 0.03 | | | | | | | 33 | 24 | | | 0.48 | 0.48 | 0.04 | | | | | | 25 | | 25 | | 0.03 | 0.97 | | | | | | | | 32 | 25 | | | 0.06 | 0.94 | | | | | | | 16 | | 26 | | 0.04 | 0.93 | 0.04 | | | | | | | 28 | 26 | | | 0.05 | 0.82 | 0.14 | | | | | | 22 | | 27 | | 0.08 | 0.67 | 0.25 | | | | | | | 12 | 27 | | | 0.13 | 0.75 | 0.13 | | | | | | 16 | | 28 | 0.00 | 0.01 | 0.33 | 0.50 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | 28 | | | | 0.55 | 0.45 | | | | | | 11 | | 29 | 0.00 | 0.00 | 0.21 | 0.50 | 0.27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 4 | 29 | 0.00 | 0.00 | 0.03 | 0.35 | 0.47 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | 5 | | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 4 | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 9 | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 3 | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 1 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 0 | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 2 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | 2 | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | | | 34
35 | 0.00 | 0.00 | 0.00 | 0.02
0.00 | 0.05
0.02 | 0.10 | 0.08
0.05 | 0.05
0.04 | 0.04
0.04 | 0.66 | 2
1 | 34
35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07
0.03 | 0.10 | 0.07
0.05 | 0.05
0.04 | 0.69
0.82 | 2 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05
0.02 | 0.03 | 0.04 | 0.04 | 0.80
0.88 | 2 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.03 | 0.05
0.02 | 0.03 | 0.04 | 0.82 | 3 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.90 | | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.97 | 1 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 2 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.98 | l i | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | _ | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 2 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 2 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | Table 12 (continued): | 2009 (s | eason 2) | | | | | | | | | | | 2009 (s | eason 3) | | | | | | | | | | | |----------|----------|--------------|-------|-------|--------------|--------------|--------------|--------------|--------------|--------------|----------|----------|--------------|--------------|-------|-------|--------------|--------------|--------------|--------------|--------------|--------------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | 15 | | 1.00 | | | | | | | | | 17 | 15 | 0.62 | 0.37 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | | 16
17 | | 1.00 | | | | | | | | | 61 | 16
17 | 0.73
0.27 | 0.27
0.73 | | | | | | | | | 15 | | 17 | | 1.00
0.86 | 0.14 | | | | | | | | 52
59 | 17 | 0.27 | 0.73 | | | | | | | | | 26
27 | | 19 | | 0.75 | 0.14 | | | | | | | | 28 | 19 | 0.04 | 0.88 | 0.08 | | | | | | | | 24 | | 20 | | 0.73 | 0.56 | 0.06 | | | | | | | 36 | 20 | 0.04 | 0.74 | 0.26 | | | | | | | | 46 | | 21 | | 0.25 | 0.73 | 0.02 | | | | | | | 44 | 21 | | 0.65 | 0.33 | 0.02 | | | | | | | 49 | | 22 | | 0.17 | 0.69 | 0.14 | | | | | | | 29 | 22 | | 0.46 | 0.44 | 0.10 | | | | | | | 50 | | 23 | | 0.08 | 0.86 | 0.06 | | | | | | | 36 | 23 | | 0.37 | 0.50 | 0.13 | | | | | | | 30 | | 24 | | 0.06 | 0.47 | 0.47 | | | | | | | 36 | 24 | | 0.08 | 0.75 | 0.17 | | | | | | | 24 | | 25 | | | 0.37 | 0.63 | | | | | | | 38 | 25 | | 0.05 | 0.68 | 0.26 | | | | | | | 19 | | 26 | | | 0.36 | 0.61 | 0.03 | | | | | | 33 | 26 | | | 0.55 | 0.45 | | | | | | | 29 | | 27 | | | 0.19 | 0.69 | 0.12 | | | | | | 26 | 27 | | | 0.40 | 0.60 | | | | | | | 15 | | 28 | | | 0.18 | 0.76 | 0.06 | | | | | | 17 | 28 | 0.00 | 0.01 | 0.33 | 0.50 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | | 29 | | | 0.08 | 0.54 | 0.38 | | | | | | 13 | 29 | 0.00 | 0.00 | 0.21 | 0.50 | 0.27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 6 | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 1 | | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 1 | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 1 | | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 4 | | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 1 | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | | | 35
36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.03
0.01 | 0.05
0.03 | 0.05
0.03 | 0.04
0.03 | 0.81
0.89 | 1 | 35
36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02
0.01 | 0.05
0.02 | 0.05
0.03 | 0.04
0.03 | 0.04
0.03 | 0.80
0.88 | 3 | | 36
37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.69 | , | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | 3 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.96 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.03 | 0.95 | 2 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 1 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 |
3 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | · · | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 3 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 5 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | Table 12 (continued): | 2010 (se | eason 1) | | | | | | | | | | | 2010 (s | eason 2) | | | | | | | | | | | |----------|----------|-------|--------------|--------------|-------|-------|-------|-------|-------|---------|----------|----------|----------|-------|--------------|--------------|-------|-------|-------|-------|-------|---------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 15 | 0.00 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 15 | | 1.00 | | | | | | | | | 13 | | 16 | | 0.79 | 0.21 | | | | | | | | 24 | 16 | | 1.00 | | | | | | | | | 41 | | 17 | | 0.55 | 0.45 | | | | | | | | 20 | 17 | | 0.98 | 0.02 | | | | | | | | 41 | | 18 | | 0.31 | 0.69 | 0.40 | | | | | | | 16 | 18 | | 0.95 | 0.05 | | | | | | | | 40 | | 19 | | 0.05 | 0.85 | 0.10 | 0.04 | | | | | | 20 | 19 | | 0.93 | 0.07 | | | | | | | | 27 | | 20 | | 0.04 | 0.88 | 0.04 | 0.04 | | | | | | 25 | 20 | | 0.43 | 0.57 | 0.44 | | | | | | | 14 | | 21 | | 0.03 | 0.72
0.82 | 0.22
0.18 | 0.03 | | | | | | 32
28 | 21 | | 0.21 | 0.68
0.83 | 0.11
0.17 | | | | | | | 19 | | 22
23 | | | 0.82 | 0.10 | | | | | | | 20 | 22
23 | | 0.12 | 0.83 | 0.17 | | | | | | | 12
17 | | 23
24 | | | 0.39 | 0.10 | 0.06 | | | | | | 31 | 23
24 | | 0.12 | 0.82 | 0.06 | 0.07 | | | | | | 15 | | 25 | | | 0.39 | 0.73 | 0.00 | | | | | | 30 | 25 | | | 0.83 | 0.13 | 0.07 | | | | | | 12 | | 26 | | | 0.20 | 0.73 | 0.26 | | | | | | 19 | 26 | | | 0.69 | 0.17 | 0.08 | | | | | | 13 | | 27 | 0.00 | 0.00 | 0.12 | 0.55 | 0.31 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | 27 | | | 0.36 | 0.45 | 0.18 | | | | | | 11 | | 28 | 0.00 | 0.00 | 0.10 | 0.30 | 0.60 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 10 | 28 | 0.00 | 0.00 | 0.17 | 0.52 | 0.29 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 7 | | 29 | 0.00 | 0.00 | 0.03 | 0.35 | 0.47 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | 6 | 29 | 0.00 | 0.00 | 0.10 | 0.45 | 0.39 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 2 | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 1 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 2 | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 3 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 1 | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | _ | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 2 | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | 1 | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | 1 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 2 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 1 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | 2 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 1 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 2 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2010 (se | eason 3) | | | | | | | | | | | 2011 (s | eason 1) | | | | | | | | | | | |----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|---------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 14 | 0.00 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | | 15 | 0.62 | 0.37 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | 15 | | 0.82 | 0.18 | | | | | | | | 17 | | 16 | 0.10 | 0.90 | | | | | | | | | 21 | 16 | | 0.46 | 0.54 | | | | | | | | 28 | | 17 | 0.04 | 0.96 | | | | | | | | | 48 | 17 | | 0.30 | 0.70 | | | | | | | | 10 | | 18 | 0.02 | 0.98 | | | | | | | | | 48 | 18 | | | 1.00 | | | | | | | | 23 | | 19 | | 0.98 | 0.02 | | | | | | | | 43 | 19 | | | 1.00 | | | | | | | | 13 | | 20 | | 0.96 | 0.04 | | | | | | | | 51 | 20 | | | 1.00 | | | | | | | | 22 | | 21 | | 0.87 | 0.13 | | | | | | | | 38 | 21 | | | 0.94 | 0.06 | | | | | | | 17 | | 22 | | 0.69 | 0.28 | 0.03 | | | | | | | 32 | 22 | | | 1.00 | | | | | | | | 23 | | 23 | | 0.48 | 0.48 | 0.04 | | | | | | | 23 | 23 | | | 0.54 | 0.46 | | | | | | | 13 | | 24 | | 0.18 | 0.82 | | | | | | | | 11 | 24 | 0.00 | 0.00 | 0.33 | 0.55 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | | 25 | | 0.07 | 0.73 | 0.20 | | | | | | | 15 | 25 | | | 0.62 | 0.38 | | | | | | | 13 | | 26 | | | 0.82 | 0.09 | 0.09 | | | | | | 11 | 26 | 0.00 | 0.00 | 0.12 | 0.55 | 0.31 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 27 | 0.00 | 0.02 | 0.45 | 0.45 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 27 | 0.00 | 0.00 | 0.06 | 0.46 | 0.41 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 28 | 0.00 | 0.01 | 0.33 | 0.50 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | 28 | 0.00 | 0.00 | 0.03 | 0.35 | 0.47 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | 8 | | 29 | 0.00 | 0.00 | 0.21 | 0.50 | 0.27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | 29 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 7 | | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 1 | 30 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 2 | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | | 31 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 2 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 1 | 32 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | | 33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 |
0.05 | 0.05 | 0.04 | 0.82 | 1 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | 3 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.92 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | _ | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 2 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 1 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | , | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2011 (s | eason 2) | | | | | | | | | | | 2011 (se | eason 3) | | | | | | | | | | | |----------|----------|-------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------|----------|----------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 15 | 0.01 | 0.95 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | 15 | 0.62 | 0.37 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5 | | 16 | | 0.96 | 0.02 | 0.02 | | | | | | | 51 | 16 | 0.35 | 0.62 | 0.04 | | | | | | | | 26 | | 17 | | 0.95 | 0.05 | | | | | | | | 65 | 17 | 0.03 | 0.97 | | | | | | | | | 63 | | 18 | | 0.92 | 0.08 | | | | | | | | 59 | 18 | | 1.00 | | | | | | | | | 85 | | 19 | | 0.85 | 0.15 | | | | | | | | 41 | 19 | | 0.97 | 0.03 | | | | | | | | 69 | | 20 | | 0.76 | 0.24 | | | | | | | | 25 | 20 | | 0.91 | 0.09 | | | | | | | | 85 | | 21 | | 0.35 | 0.65 | | | | | | | | 26 | 21 | | 0.82 | 0.18 | | | | | | | | 77 | | 22 | | 0.16 | 0.84 | | | | | | | | 38 | 22 | | 0.61 | 0.39 | | | | | | | | 57 | | 23 | | | 1.00 | | | | | | | | 40 | 23 | | 0.37 | 0.61 | 0.02 | | | | | | | 51 | | 24 | | | 0.79 | 0.21 | | | | | | | 29 | 24 | | 0.02 | 0.91 | 0.07 | | | | | | | 57 | | 25 | | | 0.92 | 0.08 | | | | | | | 26 | 25 | | 0.04 | 0.91 | 0.04 | | | | | | | 47 | | 26 | | 0.05 | 0.55 | 0.40 | | | | | | | 20 | 26 | | 0.02 | 0.85 | 0.11 | 0.02 | | | | | | 47 | | 27 | | 0.06 | 0.56 | 0.38 | | | | | | | 16 | 27 | | | 0.67 | 0.30 | 0.04 | | | | | | 27 | | 28 | | | 0.33 | 0.42 | 0.17 | 0.04 | | | | 0.04 | 24 | 28 | | | 0.53 | 0.29 | 0.18 | | | | | | 17 | | 29 | | | 0.05 | 0.67 | 0.24 | 0.05 | | | | | 21 | 29 | | | 0.55 | 0.27 | 0.18 | | | | | | 11 | | 30 | 0.00 | 0.00 | 0.00 | 0.58 | 0.42 | 0.04 | 0.05 | 0.00 | 0.04 | 0.00 | 12 | 30 | 0.00 | 0.00 | 0.29 | 0.64 | 0.07 | 0.44 | 0.00 | 0.04 | 0.04 | 0.00 | 14 | | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 6 | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 3 | | 32
33 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27
0.18 | 0.10
0.12 | 0.04
0.06 | 0.02 | 0.22
0.46 | 4 | 32
33 | 0.00 | 0.00 | 0.02
0.01 | 0.15 | 0.29
0.14 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22
0.45 | ' | | 33
34 | 0.00 | 0.00 | 0.00 | 0.03
0.01 | 0.11 | 0.18 | | 0.06 | 0.03
0.04 | | 1 | 33
34 | 0.00 | 0.00 | 0.00 | 0.05 | | 0.18 | 0.09
0.08 | 0.05 | 0.03
0.04 | 0.45 | 4 | | 35
35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04
0.01 | 0.09 | 0.09
0.05 | 0.06 | 0.04 | 0.68
0.81 | ა
ე | 35 | 0.00 | 0.00 | 0.00 | 0.02
0.00 | 0.05
0.02 | 0.10
0.05 | 0.05 | 0.05
0.04 | 0.04 | 0.80 | 4 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.04 | 0.89 | 2 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.04 | 0.04 | 0.88 | 2 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.89 | 1 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.96 | 3 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.03 | 0.95 | | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 1 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.97 | 1 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 1 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.98 | · ' | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | ' | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 1 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | ' | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | Table 12 (continued): | 2012 (se | eason 1) | | | | | | | | | | | 2012 (se | eason 2) | | | | | | | | | | | |----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | , | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 15 | | 1.00 | | | | | | | | | 14 | 15 | | 1.00 | | | | | | | | | 14 | | 16 | | 0.98 | 0.02 | | | | | | | | 44 | 16 | | 0.99 | 0.01 | | | | | | | | 81 | | 17 | | 0.80 | 0.20 | | | | | | | | 25 | 17 | | 0.98 | 0.02 | | | | | | | | 95 | | 18 | | 0.38 | 0.63 | | | | | | | | 16 | 18 | | 0.93 | 0.07 | | | | | | | | 57 | | 19 | | | 1.00 | | | | | | | | 27 | 19 | | 0.42 | 0.52 | 0.06 | | | | | | | 33 | | 20 | | | 1.00 | | | | | | | | 51 | 20 | | 0.39 | 0.61 | | | | | | | | 56 | | 21 | | 0.02 | 0.98 | | | | | | | | 64 | 21 | | 0.10 | 0.90 | | | | | | | | 50 | | 22 | | | 0.94 | 0.06 | | | | | | | 49 | 22 | | 0.10 | 0.86 | 0.03 | | | | | | | 59 | | 23 | | | 0.81 | 0.19 | | | | | | | 27 | 23 | | 0.04 | 0.89 | 0.07 | | | | | | | 27 | | 24 | | | 0.29 | 0.71 | | | | | | | 21 | 24 | | | 0.79 | 0.17 | 0.03 | | | | | | 29 | | 25 | | | 0.30 | 0.65 | 0.04 | | | | | | 23 | 25 | | | 0.76 | 0.24 | | | | | | | 21 | | 26 | | | 0.05 | 0.89 | | 0.05 | | | | | 19 | 26 | | | 0.68 | 0.32 | | | | | | | 31 | | 27 | | | 0.07 | 0.93 | | | | | | | 29 | 27 | | | 0.44 | 0.56 | | | | | | | 18 | | 28 | | | 0.06 | 0.83 | 0.11 | | | | | | 18 | 28 | | | 0.22 | 0.72 | 0.06 | | | | | | 18 | | 29 | | | | 0.76 | 0.24 | | | | | | 17 | 29 | | 0.09 | 0.18 | 0.73 | | | | | | | 11 | | 30 | | | | 0.70 | 0.30 | | | | | | 10 | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 5 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02
| 0.01 | 0.07 | 5 | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 2 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | 5 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 1 | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 2 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | 4 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | _ | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 2 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | _ | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 3 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 2 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 3 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 2 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 3 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 2 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | Table 12 (continued): | 2012 (se | eason 3) | | | | | | | | | | | 2013 (s | eason 1) | | | | | | | | | | | |----------|----------|-------|-------|-------|--------------|--------------|--------------|--------------|-------|--------------|-------|----------|----------|-------|-------|--------------|-------|--------------|--------------|--------------|--------------|--------------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 15 | 0.62 | 0.37 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 15 | | 0.80 | | 0.10 | 0.10 | | | | | | 10 | | 16 | 0.34 | 0.64 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 16 | | 0.85 | 0.15 | | | | | | | | 13 | | 17 | 0.13 | 0.83 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7 | 17 | 0.00 | 0.69 | 0.30 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7 | | 18 | 0.04 | 0.89 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 18 | 0.00 | 0.49 | 0.49 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 19 | 0.01 | 0.86 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 19 | | 0.27 | 0.73 | | | | | | | | 11 | | 20 | | 1.00 | | | | | | | | | 11 | 20 | | | 0.90 | 0.10 | | | | | | | 21 | | 21 | | 0.83 | 0.17 | | | | | | | | 24 | 21 | | | 0.92 | 0.08 | | | | | | | 25 | | 22 | | 0.67 | 0.33 | | | | | | | | 15 | 22 | | 0.09 | 0.65 | 0.26 | | | | | | | 23 | | 23 | | 0.38 | 0.62 | | | | | | | | 13 | 23 | | 0.03 | 0.63 | 0.28 | 0.06 | | | | | | 32 | | 24 | 0.00 | 0.22 | 0.63 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 24 | | | 0.68 | 0.26 | 0.05 | | | | | | 19 | | 25 | 0.00 | 0.12 | 0.63 | 0.25 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | 25 | | | 0.73 | 0.27 | | | | | | | 11 | | 26 | | 0.08 | 0.75 | 0.17 | | | | | | | 12 | 26 | | | 0.30 | 0.60 | 0.10 | | | | | | 10 | | 27 | 0.00 | 0.02 | 0.45 | 0.45 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5 | 27 | 0.00 | 0.00 | 0.12 | 0.55 | 0.31 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 28 | 0.00 | 0.01 | 0.33 | 0.50 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 28 | | | | 0.27 | 0.67 | 0.07 | | | | | 15 | | 29 | 0.00 | 0.00 | 0.21 | 0.50 | 0.27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 29 | | 0.10 | 0.10 | 0.40 | 0.40 | | | | | | 10 | | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 1 | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 6 | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 1 | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 6 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 5 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | 1 | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 5 | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | / | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 6 | | 36
37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.02
0.01 | 0.03
0.02 | 0.03
0.02 | 0.03 | 0.88 | | 36
37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.02
0.01 | 0.03
0.02 | 0.03
0.02 | 0.90 | 3 | | - | 0.00 | | 0.00 | | | | | | 0.03 | 0.92 | | | 0.00 | 0.00 | 0.00 | 0.00 | | | | | 0.02 | 0.94
0.97 | , | | 38
39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.02
0.01 | 0.02 | 0.95
0.97 | | 38
39 | 0.00 | 0.00 | 0.00 | 0.00
0.10 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 10 | | 40 | | | | | | | | 0.01 | 0.02 | 0.97 | 1 | 40 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.90 | 9 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | ı | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 4 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 7 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | ' | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | - 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2013 (s | eason 2) | | | | | | | | | | | 2013 (s | eason 3) | | | | | | | | | | | |----------|----------|--------------|--------------|--------------|-------|-------|-------|-------|-------|---------|----------|----------|----------|--------------|--------------|--------------|-------|-------|-------|-------|-------|---------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4 | | 15 | | 1.00 | | | | | | | | | 26 | 15 | 0.17 | 0.83 | | | | | | | | | 24 | | 16 | | 1.00 | | | | | | | | | 75 | 16 | 0.24 | 0.76 | | | | | | | | | 63 | | 17 | | 0.97 | 0.03 | | | | | | | | 72 | 17 | 0.09 | 0.91 | | | | | | | | | 67 | | 18 | | 0.93 | 0.04 | 0.02 | | | | | | | 46 | 18 | 0.01 | 0.99 | | | | | | | | | 82 | | 19 | | 0.77 | 0.23 | | | | | | | | 35 | 19 | 0.04 | 0.96 | 0.04 | | | | | | | | 52 | | 20 | | 0.50 | 0.50 | | | | | | | | 16 | 20 | 0.01 | 0.93 | 0.06 | | | | | | | | 71 | | 21 | | 0.33
0.07 | 0.67 | 0.14 | | | | | | | 15 | 21 | | 0.88 | 0.13 | | | | | | | | 56 | | 22 | |
0.07 | 0.79 | 0.14 | | | | | | | 14 | 22 | | 0.73 | 0.28 | 0.04 | | | | | | | 40 | | 23
24 | | | 0.60
0.63 | 0.40
0.37 | | | | | | | 10
19 | 23
24 | | 0.33
0.10 | 0.63
0.76 | 0.04
0.14 | | | | | | | 24
21 | | 25
25 | | | 0.56 | 0.36 | 0.08 | | | | | | 25 | 24
25 | | 0.10 | 0.76 | 0.14 | | | | | | | 23 | | 26 | | | 0.65 | 0.30 | 0.06 | | | | | | 17 | 26 | | 0.04 | 0.32 | 0.43 | | | | | | | 23 | | 27 | | | 0.38 | 0.62 | 0.00 | | | | | | 13 | 27 | | | 0.74 | 0.43 | | | | | | | 23 | | 28 | 0.00 | 0.00 | 0.30 | 0.52 | 0.29 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | 28 | | | 0.63 | 0.43 | 0.05 | | | | | | 19 | | 29 | 0.00 | 0.00 | 0.10 | 0.45 | 0.39 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | 29 | | | 0.50 | 0.40 | 0.10 | | | | | | 10 | | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 7 | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 8 | | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 2 | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | | | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | _ | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 1 | | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | 1 | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | 1 | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | 4 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | 4 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 2 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | 1 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 1 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.92 | 5 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 2 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | 1 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 4 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 4 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 1 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 3 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2014 (s | eason 1) | | | | | | | | | | | | eason 2) | | | | | | | | | | | |---------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 15 | | 0.86 | 0.14 | | | | | | | | 10 | 15 | | 0.91 | 0.09 | | | | | | | | 11 | | 16 | | 0.73 | 0.27 | | | | | | | | 24 | 16 | | 0.97 | 0.03 | | | | | | | | 101 | | 17 | | 0.23 | 0.77 | | | | | | | | 35 | 17 | | 0.92 | 0.08 | | | | | | | | 138 | | 18 | | | 1.00 | | | | | | | | 43 | 18 | | 0.89 | 0.11 | | | | | | | | 93 | | 19 | | 0.02 | 0.96 | | | | | | | 0.02 | 49 | 19 | | 0.56 | 0.42 | 0.01 | | | | | | | 71 | | 20 | | | 1.00 | | | | | | | | 65 | 20 | | 0.27 | 0.73 | | | | | | | | 67 | | 21 | | 0.01 | 0.92 | 0.08 | | | | | | | 71 | 21 | | 0.09 | 0.91 | | | | | | | | 79 | | 22 | | | 0.89 | 0.05 | 0.07 | | | | | | 34 | 22 | | 0.08 | 0.87 | 0.05 | | | | | | | 45 | | 23 | | | 0.76 | 0.19 | 0.05 | | | | | | 32 | 23 | | | 0.96 | 0.04 | | | | | | | 37 | | 24 | | | 0.58 | 0.31 | 0.11 | | | | | | 24 | 24 | | | 0.85 | 0.15 | | | | | | | 35 | | 25 | | 0.06 | 0.35 | 0.47 | 0.12 | | | | | | 26 | 25 | | | 0.61 | 0.38 | 0.01 | | | | | | 28 | | 26 | | | 0.17 | 0.60 | 0.24 | | | | | | 20 | 26 | | | 0.52 | 0.44 | 0.04 | | | | | | 25 | | 27 | | | 0.07 | 0.69 | 0.24 | | | | | | 26 | 27 | | | 0.24 | 0.65 | 0.12 | | | | | | 26 | | 28 | | | 0.03 | 0.72 | 0.24 | | | | | | 17 | 28 | | | 0.11 | 0.85 | 0.01 | 0.03 | | | | | 15 | | 29 | | | | 0.50 | 0.50 | | | | | | 12 | 29 | | | 0.16 | 0.63 | 0.21 | | | | | | 16 | | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 8 | 30 | | | | 0.49 | 0.51 | | | | | | 14 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 9 | 31 | | | | 0.33 | 0.24 | 0.21 | 0.21 | | | | 10 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 4 | 32 | | | | 0.38 | 0.41 | 0.09 | | 0.12 | | | 11 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 3 | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 6 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | 1 | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | 2 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 1 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 5 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 3 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 3 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | 2 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 4 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 6 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 8 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 6 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 2 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 5 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 3 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 3 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | L | Table 12 (continued): | 2014 (s | 2014 (season 3) 2015 |----------|----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------|----------|-------|--------------|--------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 40 | | 15 | 0.62 | 0.37 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 15 | | 1.00 | | | | | | | | | 18 | | 16
17 | 0.41 | 0.49 | 0.05 | 0.10 | | | | | | 0.05 | 17 | 16
17 | | 1.00 |
0.46 | | 0.00 | | | | | | 37 | | 17 | 0.08
0.06 | 0.79
0.85 | 0.05
0.03 | 0.03
0.03 | 0.03 | | | | | 0.05 | 39
62 | 17 | | 0.84
0.46 | 0.16
0.54 | | 0.00 | | | | | | 29
16 | | 19 | 0.05 | 0.80 | 0.03 | 0.03 | 0.03 | | | | | | 42 | 19 | | 0.40 | 0.97 | 0.01 | | | 0.01 | | | | 25 | | 20 | 0.00 | 0.84 | 0.16 | 0.00 | | | | | | | 40 | 20 | | 0.01 | 0.98 | 0.01 | | | 0.01 | | | | 43 | | 21 | | 0.77 | 0.23 | 0.01 | | | | | | | 44 | 21 | | | 0.97 | 0.03 | | | | | | | 43 | | 22 | | 0.56 | 0.35 | 0.09 | | | | | 0.00 | | 41 | 22 | | | 0.83 | 0.17 | | | | | | | 27 | | 23 | | 0.24 | 0.76 | | | | | | | | 28 | 23 | | | 0.55 | 0.45 | | | | | | | 30 | | 24 | | 0.28 | 0.60 | 0.12 | | | | | | | 39 | 24 | | 0.01 | 0.09 | 0.88 | 0.03 | | | | | | 20 | | 25 | | 0.02 | 0.82 | 0.04 | 0.12 | | | | | | 22 | 25 | | | 0.27 | 0.71 | 0.02 | | | | | | 31 | | 26 | | 0.11 | 0.67 | 0.13 | 0.06 | 0.03 | | | | 0.00 | 32 | 26 | | | 0.02 | 0.84 | 0.14 | | | | | | 17 | | 27 | | 0.00 | 0.79 | 0.21 | | | | | | | 21 | 27 | | | 0.01 | 0.93 | 0.06 | | | | | | 21 | | 28 | | | 0.50 | 0.49 | | | | | | 0.00 | 19 | 28 | | | 0.14 | 0.63 | 0.20 | 0.03 | | | | | 17 | | 29 | | 0.01 | 0.42 | 0.56 | | | | | | 0.01 | 11 | 29 | | | | 0.43 | 0.56 | 0.01 | | | | | 15 | | 30 | | 0.41 | 0.01 | 0.51 | 0.06 | 0.00 | | | | | 14 | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 9 | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 7 | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 6 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 8 | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 2 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18
0.10 | 0.09 | 0.05
0.05 | 0.03 | 0.45 | 1 | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48
0.69 | 3 | | 34
35 | 0.00 | 0.00 | 0.00 | 0.02
0.00 | 0.05
0.02 | 0.10 | 0.08
0.05 | 0.05 | 0.04
0.04 | 0.66
0.80 | 2 2 | 34
35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03
0.01 | 0.07
0.03 | 0.10
0.05 | 0.07
0.05 | 0.05
0.04 | 0.69 | 2 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.04 | 0.04 | 0.88 | 5 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.04 | 0.82 | 3 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.03 | 0.92 | 7 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.94 | 1 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | 6 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 2 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 7 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 7 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 5 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 2 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 2 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 2 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2015 (se | 2015 (season 2) 2015 (season 3) This is a season 3 2015 (season 3) (seaso |----------|--|-------|-------|-------|-------|-------|-------|-------|--------------|---------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | , | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | | 15 | | 1.00 | | | | | | | | | 36 | 15 | 0.62 | 0.37 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | | 16 | | 1.00 | 0.00 | | | | | | | | 120 | 16 | 0.12 | 0.88 | | | | | | | | | 46 | | 17 | | 1.00 | 0.00 | | | | | | | | 112 | 17 | 0.05 | 0.91 | 0.02 | 0.02 | | | | | | | 76 | | 18 | | 0.85 | 0.15 | 0.01 | | | | | | | 75 | 18 | | 0.97 | 0.03 | 0.01 | | | | | | | 78 | | 19 | | 0.78 | 0.17 | 0.04 | | | | | | | 41 | 19 | | 0.96 | 0.04 | 0.00 | | | | | | | 80 | | 20 | | 0.33 | 0.62 | 0.05 | | | | | | | 37 | 20 | 0.02 | 0.77 | 0.16 | 0.05 | | | | | | | 80 | | 21 | | 0.09 | 0.87 | 0.04 | | | | | | | 45 | 21 | | 0.65 | 0.30 | 0.04 | 0.01 | | | | | | 52 | | 22 | | 0.02 | 0.75 | 0.22 | 0.01 | | | | | | 47 | 22 | | 0.44 | 0.45 | 0.10 | | | | | | | 46 | | 23 | | 0.01 | 0.63 | 0.36 | 0.01 | | | | | | 41 | 23 | | 0.09 | 0.66 | 0.24 | | | | | | | 56 | | 24 | | | 0.49 | 0.51 | | | | | | | 34 | 24 | | 0.15 | 0.68 | 0.16 | 0.01 | | 0.00 | | | | 40 | | 25 | | | 0.40 | 0.55 | 0.05 | | | | | | 26 | 25 | | 0.03 | 0.51 | 0.42 | 0.03 | 0.01 | | | | | 41 | | 26 | | | 0.26 | 0.58 | 0.11 | 0.05 | | | | | 22 | 26 | | 0.08 | 0.46 | 0.46 | 0.00 | | 0.00 | | | | 49 | | 27 | | | 0.16 | 0.73 | 0.11 | 0.01 | | | | | 26 | 27 | | 0.07 | 0.25 | 0.63 | 0.02 | 0.02 | | | | | 27 | | 28 | | | 0.11 | 0.67 | 0.22 | | | | | | 25 | 28 | | | 0.24 | 0.66 | 0.08 | 0.03 | | | | | 16 | | 29 | | | | 0.62 | 0.24 | 0.05 | 0.09 | | | | 16 | 29 | | 0.11 | 0.15 | 0.48 | 0.26 | | | | | | 12 | | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 4 | 30 | | | 0.17 | 0.51 | 0.20 | 0.12 | | | | | 15 | | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 9 | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 9 | | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | 3 | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 9 | | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 1 | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | _ | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | 2 | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | 5 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | 2 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 1 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | 3 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 4 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.92 | 2 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.01 | 0.02 | 0.02 | 0.95 | 3 | | 39
40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 1 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 2 | | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | | 41
42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 4 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.99 | 1 | 42
43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99
0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | 1.00 | ı | 43
44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | | 1 | | 44
45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44
45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00
1.00 | ' | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2016 (se | 2016 (season 1) 2016 (season 2) TLIN Ago 1 Ago 2 Ago 3 Ago 4 Ago 5 Ago 7 Ago 8 Ago 10 Little TLIN Ago 1 Ago 2 Ago 3 Ago 4 Ago 5 Ago 7 Ago 8 9 |----------|---|-------|--------------|--------------|--------------|-------|-------|-------|-------|---------|----------|----------|-------|-------|--------------|--------------|--------------|-------|-------|-------|-------|---------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 15 | | 1.00 | | | | | | | | | 25 | 15 | 0.06 | 0.80 | 0.15 | | | | | | | | 26 | | 16 | | 0.96 | 0.04 | | | | | | | | 39 | 16 | | 0.95 | 0.03 | | 0.02 | | | | | | 110 | | 17 | | 0.80 | 0.20 | | | | | | | | 32 | 17 | | 0.92 | 0.06 | 0.01 | 0.02 | | | | | | 97 | | 18 | | 0.41 | 0.59 | | | | | | | | 24 | 18 | | 0.86 | 0.09 | 0.02 | 0.03 | | | | | | 69 | | 19 | | 0.12 | 0.81 | 0.07 | | | | | | | 27 | 19 | | 0.66 | 0.32 | 0.01 | | | | | | | 40 | | 20 | | 0.03 | 0.94 | 0.03 | 0.04 | | | | | | 33 | 20 | | 0.46 | 0.54 | 0.07 | | | | | | | 72 | | 21 | | | 0.91 | 0.07 | 0.01 | | | | | | 31 | 21 | | 0.39 | 0.55 | 0.07 | | | | | | | 39 | | 22 | | 0.00 | 0.98 | 0.02 | | | | | | | 17 | 22 | | 0.23 | 0.77 | 0.00 | 0.07 | | | | | | 35 | | 23 | | 0.02 | 0.75
0.68 | 0.23 | 0.04 | | | | | | 18
17 | 23 | | 0.08 | 0.81
0.71 | 0.03
0.17 | 0.07 | | | 0.03 | | | 40 | | 24
25 | | 0.12 | | 0.28
0.68 | 0.04 | | | | | | 17 | 24
25 | | | 0.71 | 0.17 | 0.10 | | | 0.03 | | | 33 | | 26
26 | | 0.12 | 0.14
0.15 | 0.68 | 0.06
0.23 | 0.03 | | 0.03 | | | 17 | 26 | | | 0.80 | 0.18 | 0.02
0.19 | | | | | | 29
26 | | 27 | | | 0.13 | 0.37 | 0.23 | 0.03 | | 0.03 | | | 10 | 27 | | | 0.30 | 0.43 | 0.19 | | | | | | 19 | | 28 | | | 0.01 | 0.20 | 0.72 | | | | | | 13 | 28 | | | 0.30 | 0.39 | 0.11 | 0.05 | | | | | 19 | | 29 | | | 0.01 | 0.41 | 0.59 | 0.00 | | | | | 15 | 29 | | | 0.17 | 0.47 | 0.75 | 0.00 | | | | | 16 | | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 7 | 30 | | 0.21 | 0.06 | 0.08 | 0.75 | | | | | | 14 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 1 | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 1 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 1 | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | 6 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 4 | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 3 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | 3 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 1 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 2 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 5 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 3 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | 1 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 2 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 3 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 2 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 2 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2016 (se | 2016 (season 3) 2017 |----------|----------------------|--------------|--------------|--------------|-------|-------|-------|-------|-------|---------|----------|----------|-------|-------|--------------|--------------|-------|-------|-------|-------|-------|---------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4 | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 15 | 0.51 |
0.49 | | | | | | | | | 16 | 15 | | 1.00 | | | | | | | | | 43 | | 16 | 0.48 | 0.52 | | | | | | | | | 45 | 16 | | 0.97 | 0.02 | 0.01 | | | | | | | 122 | | 17 | 0.22 | 0.75 | 0.04 | 0.00 | | | | | | | 48 | 17 | | 0.92 | 0.06 | 0.04 | 0.02 | | | | | | 96 | | 18 | 0.04 | 0.86 | 0.07 | 0.02 | | | | | | | 63 | 18 | | 0.83 | 0.12 | 0.04 | | | | | | | 54 | | 19 | 0.02 | 0.92 | 0.06 | 0.04 | | | | | | | 61 | 19 | | 0.58 | 0.35 | 0.07 | | | | | | | 20 | | 20 | 0.01 | 0.90 | 0.08 | 0.01 | | | | | | | 67 | 20 | | 0.11 | 0.81 | 0.08 | 0.04 | | | | | | 19 | | 21 | 0.00
0.02 | 0.72
0.70 | 0.26
0.25 | 0.02
0.03 | | | | | | | 60
44 | 21 | | 0.05 | 0.83
0.91 | 0.07
0.09 | 0.04 | | | | | | 35
27 | | 22
23 | 0.02 | 0.70 | 0.23 | 0.03 | 0.04 | | | | | | 49 | 22
23 | | 0.06 | 0.91 | 0.09 | 0.01 | | | | | | 46 | | 23
24 | | 0.44 | 0.32 | 0.14 | 0.04 | | | | | | 52 | 23
24 | | 0.06 | 0.61 | 0.11 | 0.01 | | | | | | 39 | | 25 | | 0.43 | 0.43 | 0.14 | 0.03 | | | | | | 41 | 25 | | 0.01 | 0.73 | 0.23 | 0.03 | | | | | | 31 | | 26 | | 0.23 | 0.83 | 0.03 | 0.03 | | | | | | 27 | 26 | | | 0.48 | 0.12 | 0.05 | | | | | | 16 | | 27 | | 0.03 | 0.70 | 0.28 | | | | | | | 31 | 27 | | | 0.22 | 0.74 | 0.01 | 0.03 | | | | | 17 | | 28 | | 0.00 | 0.33 | 0.31 | 0.25 | 0.11 | | | | | 20 | 28 | | 0.11 | 0.28 | 0.46 | 0.14 | 0.00 | | | | | 12 | | 29 | | | 0.22 | 0.36 | 0.42 | 0 | | | | | 13 | 29 | | 0 | 0.20 | 0.65 | 0.09 | 0.27 | | | | | 13 | | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 9 | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 6 | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 5 | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 7 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 8 | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 4 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | 4 | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | 2 | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | 1 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 1 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | 4 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 1 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.92 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 2 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 2 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 1 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 2 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2017 (s | eason 2) | | | | | | | | | | | 2017 (s | eason 3) | | | | | | | | | | | |----------|----------|--------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|----------|--------------|--------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 40 | | 15
16 | | 1.00
0.99 | 0.01 | | | | | | | | 32
110 | 15
16 | 0.39
0.12 | 0.61
0.88 | | | | | | | | | 10
38 | | 17 | 0.00 | 0.99 | 0.01 | | | | | | | | 123 | 17 | 0.12 | 0.88 | 0.03 | | | | | | | | 71 | | 18 | 0.00 | 0.98 | 0.02 | | | | | | | | 111 | 18 | | 0.95 | 0.05 | | | | | | | | 84 | | 19 | 0.02 | 0.95 | 0.02 | | | | | | | | 86 | 19 | 0.02 | 0.98 | 0.00 | | | | | | | | 83 | | 20 | 0.02 | 0.96 | 0.04 | | | | | | | | 66 | 20 | 0.02 | 0.96 | 0.04 | | | | | | | | 84 | | 21 | 0.07 | 0.68 | 0.23 | 0.00 | 0.02 | | | | | | 35 | 21 | 0.01 | 0.93 | 0.06 | | | | | | | | 85 | | 22 | | 0.39 | 0.57 | 0.01 | 0.03 | | | | | | 23 | 22 | | 0.89 | 0.10 | 0.02 | | | | | | | 58 | | 23 | | 0.23 | 0.77 | | | | | | | | 15 | 23 | | 0.78 | 0.22 | 0.01 | | | | | | | 60 | | 24 | | 0.17 | 0.83 | | | | | | | | 16 | 24 | | 0.44 | 0.44 | 0.05 | 0.07 | | | | | | 37 | | 25 | | 0.05 | 0.86 | 0.04 | 0.04 | | | | | | 21 | 25 | | 0.23 | 0.73 | 0.04 | | | | | | | 33 | | 26 | | 0.04 | 0.91 | 0.04 | | | | | | | 24 | 26 | | 0.13 | 0.76 | 0.08 | 0.03 | | | | | | 28 | | 27 | | 0.05 | 0.72 | 0.24 | | | | | | | 17 | 27 | | | 0.83 | 0.11 | | | 0.06 | | | | 14 | | 28 | 0.00 | 0.00 | 0.17 | 0.52 | 0.29 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 28 | | 0.05 | 0.48 | 0.47 | | | | | | | 19 | | 29 | | | 0.26 | 0.56 | 0.18 | | | | | | 11 | 29 | | | 0.53 | 0.41 | | 0.07 | | | | | 15 | | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 5 | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 6 | | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 5 | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 2 | | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | 2 | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 2 | | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 2
1 | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45
0.66 | 1 | | 34
35 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.04
0.01 | 0.09
0.03 | 0.09
0.05 | 0.06
0.05 | 0.04
0.04 | 0.68
0.81 | 2 | 34
35 | 0.00 | 0.00 | 0.00 | 0.02
0.00 | 0.05
0.02 | 0.10
0.05 | 0.08
0.05 | 0.05
0.04 | 0.04
0.04 | 0.80 | 1 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.03 | 0.04 | 0.81 | 1 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.03 | 0.04 | 0.04 | 0.80 | ' | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.83 | 1 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | 2 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.02 | 0.95 | 1 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 1 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 2 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 2 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | Table 12 (continued): | 2018 (s | eason 1) | | | | | | | | | | | 2018 (s | eason 2) | | | | | | | | | | | |----------|----------|-------|-------|--------------|--------------|-------|--------------|--------------|-------|--------------|-------|----------|----------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4 | | 15 | | 0.92 | 0.08 | | | | | | | | 33 | 15 | | 0.99 | 0.01 | | | | | | | | 54 | | 16 | | 0.90 | 0.10 | | | | | | | | 67 | 16 | | 0.97 | 0.03 | | | | | | | | 256 | | 17 | | 0.86 | 0.14 | | | | | | | | 50 | 17 | 0.00 | 0.96 | 0.03 | | | | | | | | 237 | | 18 | | 0.33 | 0.67 | | | | | | | | 38 | 18 | | 0.90 | 0.10 | | | | | | | | 167 | | 19 | | 0.11 | 0.89 | | | | 0.00 | | | | 35 | 19 | | 0.69 | 0.31 | | | | | | | | 120 | | 20 | | 0.03 | 0.95 | 0.02 | | | | | | | 60 | 20 | | 0.44 | 0.54 | 0.02 | | | | | | | 73 | | 21 | | 0.05 | 0.89 | 0.06 | | | | | | | 59 | 21 | | 0.21 | 0.78 | 0.01 | | | | | | | 44 | | 22 | | 0.02 | 0.98 | | | | | | | | 58 | 22 | | 0.15 | 0.79 | 0.06 | 0.00 | | | | | | 53 | | 23 | | | 0.98 | 0.02 | | | | | | | 55 | 23 | | 0.06 | 0.91 | 0.03 | | | | | | | 56 | | 24 | | 0.02 | 0.81 | 0.17 | | | | | | | 45 | 24 | | 0.00 | 0.94 | 0.06 | | | | | | | 60 | | 25 | | | 0.60 | 0.34 | 0.06 | | 0.00 | | | | 45 | 25 | | | 0.89 | 0.11 | | | | | | | 61 | | 26 | | | 0.41 | 0.55 | 0.04 | | | | | | 27 | 26 | | | 0.76 | 0.23 | 0.00 | | | | | | 45 | | 27 | | | 0.17 | 0.58 | 0.25 | | 0.00 | | | | 15 | 27 | | | 0.69 | 0.23 | 0.08 | 0.40 | | | | | 29 | | 28 | | | 0.13 | 0.71 | 0.09 | | 0.08 | | | | 21 | 28 | | | 0.66 | 0.13 | 0.11 | 0.10 | | | | | 19 | | 29 | 0.00 | 0.00 | 0.03 | 0.49 | 0.30 | 0.15 | 0.03 | 0.04 | 0.00 | 0.04 | 25 | 29 | | | 0.06 | 0.69 | 0.19 | 0.06 | | | | | 10 | | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 4 | 30 | 0.00 | 0.00 | 0.00 | 0.59 | 0.41 | 0.04 | 0.05 | 0.00 | 0.04 | 0.00 | 12 | | 31 | 0.00 | 0.00 | 0.00 | 0.29 | 0.71 | 0.30 | 0.45 | 0.05 | 0.02 | 0.00 | 11 | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02
0.04 | 0.01 | 0.06
0.22 | 5 | | 32
33 | 0.00 | 0.00 | 0.00 | 0.05
0.01 | 0.20
0.08 | 0.30 | 0.15
0.15 | 0.05
0.07 | 0.02 | 0.23
0.48 | 2 | 32
33 | 0.00 | 0.00 | 0.01
0.00 | 0.09
0.03 | 0.25
0.11 | 0.27
0.18 | 0.10
0.12 | 0.04 | 0.02
0.03 | 0.22 | 2
2 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.17 | 0.13 | 0.07 | 0.04 | 0.48 | 1 | 34 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.40 | 2 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.03 | 0.82 | 1 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 2 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.04 | 0.90 | 1 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.04 | 0.89 | 2 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.02 | 0.94 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 6 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 8 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | · | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 8 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 4 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 2 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | Table 12 (continued): | 2018 (se | eason 3) | | | | | | | | | | | 2019 (se | eason 1) | | | | | | | | | | | |----------|----------|-------|-------|-------|-------|-------|--------------|--------------|--------------|--------------|-------|----------|----------|-------|-------|-------|-------|-------|-------|--------------|--------------|--------------|--------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | , | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 15 | 0.45 | 0.55 | | | | | | | | | 12 | 15 | | 0.81 | 0.19 | | | | | | | | 22 | | 16 | 0.24 | 0.74 | 0.02 | | | | | | | | 45 | 16 | | 0.69 | 0.31 | | | | | | | | 50 | | 17 | 0.07 | 0.93 | 0.00 | | | | | | | | 103 | 17 | | 0.36 | 0.64 | | | | | | | | 54 | | 18 | 0.00 | 0.95 | 0.05 | | | | | | | | 97 | 18 | | 0.08 | 0.92 | | | | | | | | 44 | | 19 | 0.01 | 0.94 | 0.05 | | | | | | | | 109 | 19 | | 0.00 | 0.99 | 0.01 | | | | | | | 46 | | 20 | | 0.96 | 0.04 | | | | | | | | 101 | 20 | | | 1.00 | 0.00 | | | | | | | 52 | | 21 | 0.00 | 0.74 | 0.26 | | | | | | | | 81 | 21 | | | 0.81 | 0.16 | 0.04 | | | | | | 47 | | 22 | | 0.60 | 0.40 | | | | | | | | 56 | 22 | | | 0.88 | 0.12 | | | | | | | 51 | | 23 | 0.00 | 0.22 | 0.77 | 0.01 | | | | | | | 50 | 23 | | | 0.72 | 0.28 | | | | | | | 37 | | 24 | | 0.10 | 0.84 | 0.06 | | | | | | | 50 | 24 | | | 0.51 | 0.49 | | | | | | | 22 | | 25 | | 0.06 | 0.94 | 0.00 | 0.00 | | | | | | 42 | 25 | | | 0.38 | 0.62 | | | | | | | 17 | | 26 | | | 0.92 | 0.08 | | | | | | | 33 | 26 | | | 0.27 | 0.59 | 0.14 | | | | | | 13 | | 27 | | | 0.80 | 0.20 | | | | | | | 26 | 27 | 0.00 | 0.00 | 0.12 | 0.55 | 0.31 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | | 28 | | | 0.99 | 0.01 | | | | | | | 10 | 28 | 0.00 | 0.00 | 0.06 | 0.46 | 0.41 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 29 | 0.00 | 0.00 | 0.21 | 0.50 | 0.27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 6 | 29 | 0.00 | 0.00 | 0.03 | 0.35 | 0.47 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | 9 | | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 3 | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 3 | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 2 | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 4 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 1 | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 3 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | 1 | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 80.0 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 2 | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | 1 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | 1 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 1 | | 36
37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03
0.02 | 0.03 | 0.88
0.92 | 2 | 36
37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 3
2 | | - | | | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | | 4 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | 2 | | 38
39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.02 | 0.02 | 0.95
0.97 | 3 | 36
39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.01 | 0.02
0.01 | 0.97
0.98 | 9 | | 40 | | | | | | | | | | | | 40 | | | | | | | | | | | | | 40
41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.01
0.01 | 0.98
0.98 | 3 | 40
41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.01 | 0.99
0.99 | 5 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | ' | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | , | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 43
44 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 43
44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00
1.00 | | 44
45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | Table
12 (continued): | 2019 (s | eason 2) | | | | | | | | | | | | eason 3) | | | | | | | | | | | |---------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4 | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3 | | 15 | | 1.00 | | | | | | | | | 48 | 15 | 0.22 | 0.78 | | | | | | | | | 21 | | 16 | | 0.97 | 0.03 | | | | | | | | 119 | 16 | 0.28 | 0.68 | 0.03 | | | | | | | | 69 | | 17 | | 0.94 | 0.06 | | | | | | | | 129 | 17 | 0.08 | 0.92 | 0.00 | | | | | | | | 80 | | 18 | | 0.74 | 0.24 | 0.02 | | | | | | | 81 | 18 | 0.03 | 0.89 | 0.06 | 0.01 | | | | | | | 100 | | 19 | | 0.55 | 0.45 | | | | | | | | 54 | 19 | | 0.85 | 0.15 | 0.00 | | | | | | | 102 | | 20 | | 0.18 | 0.79 | 0.03 | | | | | | | 48 | 20 | | 0.68 | 0.29 | 0.02 | | | | | | | 86 | | 21 | | 0.10 | 0.89 | 0.01 | | | | | | | 62 | 21 | | 0.39 | 0.61 | | | | | | | | 61 | | 22 | | 0.03 | 0.94 | 0.03 | | | | | | | 59 | 22 | | 0.36 | 0.62 | 0.02 | | | | | | | 70 | | 23 | | 0.06 | 0.86 | 0.08 | | | | | | | 61 | 23 | | 0.18 | 0.77 | 0.03 | | 0.01 | | | | | 71 | | 24 | | | 0.89 | 0.11 | | | | | | | 42 | 24 | | 0.05 | 0.85 | 0.10 | | | | | | | 84 | | 25 | | | 0.74 | 0.26 | | | | | | | 41 | 25 | | 0.03 | 0.86 | 0.11 | | | | | | | 68 | | 26 | | | 0.56 | 0.44 | | | | | | | 22 | 26 | | | 0.81 | 0.19 | | | | | | | 40 | | 27 | | | 0.19 | 0.78 | | | | | 0.03 | | 12 | 27 | | 0.03 | 0.54 | 0.42 | 0.01 | | | | | | 56 | | 28 | | | 0.19 | 0.51 | 0.31 | | | | | | 15 | 28 | | | 0.54 | 0.39 | 0.07 | | | | | | 28 | | 29 | | | 0.19 | 0.79 | | 0.02 | | | | | 10 | 29 | | | 0.46 | 0.54 | | | | | | | 14 | | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 3 | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 7 | | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 6 | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 5 | | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | 3 | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 3 | | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 5 | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | 2 | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | 4 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 4 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | 2 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 5 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 2 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.92 | | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | 1 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 1 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | _ | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | L | Table 12 (continued): | 2020 (se | eason 1) | | | | | | | | | | | 2020 (s | eason 2) | | | | | | | | | | | |----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|---------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 15 | | 0.76 | 0.24 | | | | | | | | 14 | 15 | | 0.91 | 0.09 | | | | | | | | 28 | | 16 | | 1.00 | | | | | | | | | 37 | 16 | | 0.86 | 0.14 | | | | | | | | 91 | | 17 | | 0.66 | 0.25 | 0.09 | | | | | | | 31 | 17 | | 0.89 | 0.10 | 0.01 | | | | | | | 122 | | 18 | | 0.48 | 0.52 | | | | | | | | 17 | 18 | | 0.81 | 0.19 | | | | | | | | 93 | | 19 | | 0.08 | 0.92 | | | | | | | | 11 | 19 | | 0.75 | 0.25 | | | | | | | | 63 | | 20 | | 0.05 | 0.86 | 0.09 | | | | | | | 27 | 20 | | 0.33 | 0.63 | 0.05 | | | | | | | 50 | | 21 | | | 0.86 | 0.14 | | | | | | | 19 | 21 | | 0.35 | 0.55 | 0.09 | | | | | | | 42 | | 22 | | | 0.80 | 0.20 | | | | | | | 20 | 22 | | 0.13 | 0.82 | 0.05 | | | | | | | 27 | | 23 | | | 0.30 | 0.70 | | | | | | | 13 | 23 | | 0.07 | 0.82 | 0.10 | 0.01 | | | | | | 24 | | 24 | | | 0.54 | 0.46 | | | | | | | 23 | 24 | | 0.01 | 0.78 | 0.21 | | | | | | | 24 | | 25 | | | 0.35 | 0.48 | 0.17 | | | | | | 14 | 25 | | | 0.73 | 0.27 | | | | | | | 23 | | 26 | | | 0.18 | 0.77 | 0.05 | | | | | | 24 | 26 | | | 0.25 | 0.67 | 0.08 | | | | | | 15 | | 27 | | | 0.08 | 0.82 | 0.10 | | | | | | 16 | 27 | | | 0.27 | 0.38 | 0.34 | 0.02 | | | | | 17 | | 28 | 0.00 | 0.00 | 0.06 | 0.46 | 0.41 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | 28 | | | 0.30 | 0.36 | 0.34 | | | | | | 13 | | 29 | 0.00 | 0.00 | 0.03 | 0.35 | 0.47 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | 8 | 29 | 0.00 | 0.00 | 0.10 | 0.45 | 0.39 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 8 | | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 5 | 30 | 0.00 | 0.00 | 0.05 | 0.34 | 0.45 | 0.14 | 0.02 | 0.00 | 0.00 | 0.01 | 4 | | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 6 | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 6 | | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 2 | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | 2 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | 2 | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 2 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.81 | 1 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.03 | 0.89 | 1 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.93 | 3 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | _ | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.96 | 1 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 2 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.97 | 4 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 5 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | <u> </u> | Table 12 (continued): | 2020 (se | eason 3) | | | | | | | | | | | 2021 (s | eason 1) | | | | | | | | | | | |----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|---------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.15 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.01 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2 | 14 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 15 | 0.84 | | 0.16 | | | | | | | | 11 | 15 | | 1.00 | | | | | | | | | 36 | | 16 | 0.48 | 0.27 | 0.25 | | | | | | | | 42 | 16 | | 0.93 | 0.06 | | 0.01 | | | | | | 78 | | 17 | 0.53 | 0.33 | 0.14 | | | | | | | | 25 | 17 | | 0.96 | 0.04 | | | | | | | | 69 | | 18 | 0.08 | 0.77 | 0.15 | | | | | | | | 31 | 18 | | 0.82 | 0.14 | 0.04 | | | | | | | 38 | | 19 | 0.01 | 0.95 | 0.04 | | | | | | | | 42 | 19 | | 0.53 | 0.47 | | | | | | | | 32 | | 20 | 0.03 | 0.91 | 0.06 | | | | | | | | 31 | 20 | | 0.20 | 0.80 | | | | | | | | 30 | | 21 | | 0.94 | 0.06 | | | | | | | | 35 | 21 | | 0.06 | 0.90 | 0.04 | | | | | | | 34 | | 22 | 0.05 | 0.54 | 0.35 | 0.05 | | | | | | | 39 | 22 | | | 0.98 | | 0.02 | | | | | | 35 | | 23 | | 0.79 | 0.21 | | | | | | | | 32 | 23 | | 0.01 | 0.85 | 0.12 | 0.02 | | | | | | 40 | | 24 | | 0.26 | 0.68 | 0.07 | | | | | | | 46 | 24 | | 0.01 | 0.71 | 0.13 | 0.16 | | | | | | 31 | | 25 | | 0.27 | 0.59 | 0.14 | | | | | | | 30 | 25 | | | 0.31 | 0.46 | 0.14 | 0.10 | | | | | 27 | | 26 | | 0.11 | 0.71 | 0.18 | | | | | | | 32 | 26 | | | 0.35 | 0.49 | 0.16 | | | | | | 14 | | 27 | | 0.09 | 0.66 | 0.25 | | | | | | | 21 | 27 | | | 0.19 | 0.69 | 0.07 | 0.05 | | | | | 25 | | 28 | | 0.03 | 0.31 | 0.66 | | | | | | | 22 | 28 | | | 0.18 | 0.30 | 0.45 | 0.07 | | | | | 19 | | 29 | | | 0.64 | 0.22 | 0.14 | | | | | | 12 | 29 | | 0.04 | 0.04 | 0.31 | 0.60 | | | | | | 13 | | 30 | 0.00 | 0.00 | 0.12 | 0.42 | 0.38 | 0.05 | 0.01 | 0.00 | 0.00 | 0.01 | 7 | 30 | 0.00 | 0.00 | 0.01 | 0.23 | 0.46 | 0.26 | 0.03 | 0.01 | 0.00 | 0.01 | 9 | | 31 | 0.00 | 0.00 | 0.06 | 0.29 | 0.40 | 0.14 | 0.03 | 0.01 | 0.01 | 0.06 | 6 | 31 | 0.00 | 0.00 | 0.00 | 0.12 | 0.36 | 0.34 | 0.08 | 0.02 | 0.01 | 0.07 | 6 | | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 4 | 32 | 0.00 | 0.00 | 0.00 | 0.05 | 0.20 | 0.30 | 0.15 | 0.05 | 0.02 | 0.23 | 5 | | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | 3 | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.17 | 0.15 | 0.07 | 0.04 | 0.48 | | | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | 3 | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.10 | 0.07 | 0.05 | 0.69 | 1 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 | 0.80 | 5 | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | 0.82 | 2 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.88 | 6 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | 1 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.04 | 0.00 | 0.00 | 0.90 | 10 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.94 | 3 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | 4 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 1 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 3 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 6 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | 2 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 2 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 7 | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 1 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | L | Table 12 (continued): | 2021 (s | eason 2) | | | | | | | | | | | 2021 (s | eason 3) | | | | | | | | | | | |----------|----------|--------------|--------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|----------|--------------|--------------|-------|-------|--------------|--------------|--------------|--------------|--------------|--------------|----------| | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | TL_IN | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | total | | 10 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11 | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 12 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | 13 | 0.34 | 0.65 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 13 | 0.92 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | 14 | 0.08 | 0.90 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 47 | 14 | 0.82 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 45 | | 15 | 0.04 | 1.00 | | | | | | | | | 17 | 15 | 0.93 | 0.07 | 0.00 | | 0.07 | | | | | | 15 | | 16 | 0.01 | 0.99 | 0.01 | | | | | | | | 80
125 | 16 | 0.89
0.68 | 0.07
0.29 | 0.03 | 0.04 | | | | | | | 42
42 | | 17
18 | | 0.99
1.00 | 0.01
0.00 | | | | | | | | 140 | 17
18 | 0.00 | 0.29 | 0.09 | 0.04 | | | | | | | 33 | | 19 | | 0.97 | 0.00 | 0.02 | | | | | | | 110 | 19 | 0.23 | 0.82 | 0.03 | | | | | | | | 33 | | 20 | | 0.93 | 0.02 | 0.02 | | | | | | | 81 | 20 | 0.03 | 0.94 | 0.15 | 0.04 | | | | | | | 44 | | 21 | | 0.74 | 0.18 | 0.09 | | | | | | | 60 | 21 | 0.02 | 0.93 | 0.04 | 0.03 | | | | | | | 54 | | 22 | | 0.57 | 0.36 | 0.06 | | | | | | | 48 | 22 | 0.03 | 0.81 | 0.16 | 0.00 | | | | | | | 43 | | 23 | | 0.22 | 0.67 | 0.11 | | | | | | | 39 | 23 | 0.02 | 0.75 | 0.19 | 0.03 | | | | | | | 58 | | 24 | | 0.01 | 0.91 | 0.09 | | | | | | | 37 | 24 | | 0.52 | 0.39 | 0.09 | | | | | | | 38 | | 25 | | | 0.82 | 0.13 | 0.05 | | | | | | 23 | 25 | | 0.40 | 0.56 | 0.04 | | | | | | | 40 | | 26 | | 0.09 | 0.54 | 0.34 | 0.03 | | | | | | 34 | 26 | | 0.35 | 0.44 | 0.21 | | | | | | | 39 | | 27 | | | 0.44 | 0.45 | 0.05 | 0.06 | | | | | 30 | 27 | | 0.28 | 0.43 | 0.29 | 0.00 | | | | | | 39 | | 28 | | | 0.48 | 0.46 | 0.06 | | | | | | 15 | 28 | | 0.22 | 0.32 | 0.46 | | | | | | | 25 | | 29 | | 0.05 | 0.28 | 0.53 | 0.08 | 0.06 | | | | | 14 | 29 | | 0.08 | 0.51 | 0.37 | 0.05 | | | | | | 20 | | 30 | | | 0.01 | 0.67 | 0.29 | | 0.02 | | | | 12 | 30 | | 0.25 | 0.22 | 0.37 | 0.17 | | | | | | 14 | | 31 | 0.00 | 0.00 | 0.02 | 0.21 | 0.39 | 0.24 | 0.05 | 0.02 | 0.01 | 0.06 | 8 | 31 | | | 0.13 | 0.20 | 0.60 | 0.07 | | | | | 16 | | 32 | 0.00 | 0.00 | 0.01 | 0.09 | 0.25 | 0.27 | 0.10 | 0.04 | 0.02 | 0.22 | 7 | 32 | 0.00 | 0.00 | 0.02 | 0.15 | 0.29 | 0.21 | 0.07 | 0.03 | 0.02 | 0.22 | 7 | | 33 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.18 | 0.12 | 0.06 | 0.03 | 0.46 | 4 | 33 | 0.00 | 0.00 | 0.01 | 0.05 | 0.14 | 0.18 | 0.09 | 0.05 | 0.03 | 0.45 | 4 | | 34 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.09 | 0.06 | 0.04 | 0.68 | 1 | 34 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.08 | 0.05 | 0.04 | 0.66 | 5 | | 35
36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
0.00 | 0.03
0.01 | 0.05
0.03 | 0.05
0.03 | 0.04
0.03 | 0.81
0.89 | 4 | 35
36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02
0.01 | 0.05
0.02 | 0.05
0.03 | 0.04
0.03 | 0.04
0.03 | 0.80
0.88 | 2 | | 36
37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.69 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.03 | 0.66 | 2 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.96 | 1 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.03 | 0.95 | 3 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 2 | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | 2 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 |
1 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.98 | _ | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 1 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 1 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 2 | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1 | 44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | Table 13: Annual recreational Red Drum catch-at-age (harvest + dead discards) as numbers of fish and yield in pounds used as inputs of the ASAP base model. | - | | | | | Recrea | tional | | | | | | |------|---------|-----------|---------|---------|--------|--------|-------|-------|-------|---------|-------------| | Year | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | Yield (lbs) | | 1982 | 490,379 | 406,163 | 238,310 | 80,678 | 13,789 | 512 | 65 | 24 | 12 | 124 | 2,351,778 | | 1983 | 982,417 | 640,810 | 77,836 | 22,487 | 10,754 | 2,352 | 524 | 182 | 88 | 950 | 2,335,466 | | 1984 | 475,519 | 486,993 | 97,647 | 22,579 | 2,599 | 523 | 193 | 94 | 71 | 2,882 | 1,783,195 | | 1985 | 341,920 | 398,575 | 131,424 | 34,451 | 10,803 | 1,749 | 419 | 266 | 218 | 6,530 | 1,817,233 | | 1986 | 476,084 | 315,141 | 84,439 | 20,388 | 4,931 | 803 | 213 | 88 | 51 | 1,441 | 1,378,567 | | 1987 | 484,539 | 441,583 | 87,559 | 19,782 | 4,453 | 1,014 | 526 | 377 | 322 | 12,367 | 1,846,816 | | 1988 | 73,363 | 309,148 | 87,263 | 13,857 | 1,355 | 150 | 39 | 24 | 29 | 3,211 | 1,114,779 | | 1989 | 70,397 | 440,666 | 223,926 | 61,535 | 13,602 | 2,620 | 914 | 542 | 421 | 11,786 | 2,786,333 | | 1990 | 50,195 | 263,892 | 184,041 | 58,122 | 8,051 | 1,298 | 411 | 321 | 358 | 18,138 | 2,213,214 | | 1991 | 169,767 | 344,297 | 174,211 | 75,934 | 19,711 | 1,993 | 398 | 190 | 137 | 3,792 | 2,458,057 | | 1992 | 111,243 | 723,480 | 227,139 | 50,912 | 14,464 | 1,981 | 354 | 212 | 194 | 8,332 | 3,003,262 | | 1993 | 112,314 | 553,476 | 333,790 | 95,834 | 17,470 | 3,512 | 938 | 507 | 388 | 15,029 | 3,724,493 | | 1994 | 64,383 | 431,764 | 367,753 | 128,442 | 23,464 | 2,128 | 635 | 370 | 296 | 12,381 | 3,746,849 | | 1995 | 91,857 | 879,308 | 465,222 | 161,253 | 36,783 | 4,977 | 1,288 | 667 | 511 | 17,609 | 5,749,211 | | 1996 | 59,061 | 539,358 | 548,144 | 205,996 | 47,091 | 6,952 | 1,475 | 786 | 617 | 25,587 | 5,660,025 | | 1997 | 92,150 | 509,772 | 404,372 | 195,047 | 52,725 | 8,820 | 2,147 | 1,208 | 1,033 | 46,857 | 5,913,754 | | 1998 | 102,367 | 646,762 | 316,794 | 117,521 | 30,346 | 5,050 | 1,724 | 1,102 | 937 | 36,290 | 4,569,354 | | 1999 | 112,701 | 728,752 | 480,604 | 163,821 | 43,587 | 8,081 | 2,189 | 1,120 | 828 | 27,660 | 5,709,160 | | 2000 | 106,754 | 804,657 | 560,350 | 237,174 | 67,020 | 11,499 | 2,566 | 1,186 | 809 | 32,196 | 7,199,702 | | 2001 | 79,193 | 859,290 | 631,104 | 220,521 | 55,918 | 10,799 | 2,381 | 1,263 | 969 | 33,278 | 7,107,845 | | 2002 | 176,011 | 624,979 | 421,575 | 168,899 | 34,532 | 11,405 | 2,569 | 1,505 | 1,314 | 61,345 | 6,263,101 | | 2003 | 137,110 | 541,505 | 368,652 | 183,085 | 43,527 | 12,062 | 3,111 | 1,544 | 1,153 | 41,953 | 5,728,435 | | 2004 | 85,928 | 562,996 | 268,031 | 124,622 | 35,287 | 4,758 | 2,099 | 1,756 | 1,773 | 75,120 | 5,262,071 | | 2005 | 133,705 | 451,010 | 232,369 | 95,725 | 29,942 | 10,892 | 2,165 | 1,108 | 969 | 39,564 | 4,299,753 | | 2006 | 107,676 | 654,274 | 179,265 | 70,311 | 15,985 | 5,805 | 2,010 | 1,232 | 1,151 | 46,010 | 4,715,369 | | 2007 | 87,905 | 710,794 | 431,827 | 86,973 | 29,268 | 9,037 | 3,796 | 1,392 | 994 | 27,818 | 5,502,870 | | 2008 | 98,430 | 662,295 | 622,068 | 115,554 | 20,346 | 4,458 | 1,685 | 952 | 1,403 | 22,837 | 5,698,988 | | 2009 | 138,168 | 705,788 | 512,695 | 265,557 | 41,230 | 7,531 | 2,480 | 1,249 | 863 | 21,995 | 6,540,034 | | 2010 | 85,870 | 1,087,728 | 654,421 | 202,708 | 72,235 | 8,244 | 2,206 | 1,393 | 1,158 | 34,919 | 7,723,879 | | 2011 | 69,423 | 910,686 | 813,571 | 145,694 | 31,495 | 8,329 | 2,988 | 1,482 | 928 | 21,137 | 7,618,956 | | 2012 | 86,739 | 714,744 | 515,575 | 152,796 | 23,529 | 4,898 | 1,482 | 888 | 766 | 30,107 | 5,870,340 | | 2013 | 104,725 | 1,100,334 | 475,188 | 191,932 | 59,418 | 14,692 | 4,571 | 2,551 | 1,865 | 50,279 | 7,500,684 | | 2014 | 87,931 | 543,062 | 531,992 | 140,748 | 37,471 | 8,800 | 3,869 | 1,727 | 1,216 | 42,902 | 5,802,226 | | 2015 | 75,969 | 618,561 | 328,569 | 237,402 | 41,053 | 12,929 | 4,758 | 1,833 | 1,299 | 35,880 | 5,459,462 | | 2016 | 93,690 | 525,955 | 328,712 | 86,991 | 60,024 | 7,863 | 2,236 | 2,032 | 871 | 22,266 | 4,344,263 | | 2017 | 82,037 | 1,202,342 | 342,406 | 76,621 | 25,658 | 10,318 | 3,116 | 1,275 | 871 | 22,582 | 5,902,240 | | 2018 | 95,092 | 1,170,988 | 675,524 | 96,261 | 28,936 | 7,630 | 3,175 | 1,115 | 968 | 34,506 | 7,175,799 | | 2019 | 58,711 | 507,748 | 586,005 | 110,370 | 19,842 | 7,826 | 2,492 | 1,223 | 1,083 | 15,692 | 4,598,094 | | 2020 | 76,361 | 518,590 | 343,176 | 131,829 | 29,689 | 8,451 | 2,113 | 911 | 572 | 14,888 | 4,099,834 | | 2021 | 58,517 | 421,405 | 171,283 | 69,618 | 24,370 | 8,209 | 2,001 | 970 | 657 | 16,532 | 3,234,525 | Table 14: Annual inshore and offshore commercial Red Drum catch-at-age compositions (proportion at age) and yield in pounds used as inputs of the ASAP base model. | - | | | | | Comm | ercial Ins | hore | | | | | | | | | | Comm | ercial Offs | shore | | | | | |--------------|-------|----------|----------|----------|----------|------------|----------|----------|----------|----------|-------------|--------------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|-------------| | Year | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | Yield (lbs) | Year | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | Yield (lbs) | | 1982 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 1,278,130 | 1982 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 492,110 | | 1983 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 1,761,350 | 1983 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 728,450 | | 1984 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 2,247,680 | 1984 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1,347,900 | | 1985 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 2,229,310 | 1985 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 3,777,810 | | 1986 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 4,465,900 | 1986 | 0.000 | 0.012 | 0.049 | 0.058 | 0.039 | 0.048 | 0.055 | 0.051 | 0.027 | 0.662 | 9,259,810 | | 1987 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 4,528,900 | 1987 | 0.000 | 0.010 | 0.038 | 0.041 | 0.053 | 0.045 | 0.033 | 0.049 | 0.057 | 0.674 | 134,530 | | 1988 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 243,590 | 1988 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 5,440 | | 1989 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 24,810 | 1989 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 1990 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 2,410 | 1990 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 1991 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 1991 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 1992 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 1992 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 1993 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 1,880 | 1993 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 1994 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 2,960 | 1994 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 1995 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 1995 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 1996 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 1,930 | 1996 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 1997 | 0.000 | 0.171 | 0.549 | 0.222 | 0.050 | 0.004 | 0.000 | 0.000 | 0.000 | 0.003 | 2,200 | 1997 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 1998 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 1998 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 1999 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 1999 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 2000 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 2000 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 2001 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 2001 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 2002 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 2002 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 2003 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 2003 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 2004 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 2004 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 2005 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 2005 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 2006 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 2006 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 2007 | -1 | -1 | -1 | -1 |
-1 | -1 | -1 | -1 | -1 | -1 | 0 | 2007 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | | 2008 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 2008 | -1 | -1 | -1 | -1 | -1 | -1
-1 | -1 | -1 | -1 | -1 | 0 | | 2009 | -1 | -1
-1 | -1
-1 | -1 | -1 | -1 | -1 | -1
-1 | -1 | -1 | 0 | 2009 | -1
-1 | -1 | -1 | -1
-1 | -1 | | -1 | -1 | -1 | -1 | 0 | | 2010
2011 | -1 | -1
-1 0 | 2010
2011 | -1
-1 | -1
-1 | -1 | -1
-1 | -1
-1 | -1
-1 | -1 | -1
-1 | -1
-1 | -1
-1 | 0 | | 2011 | -1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1 | -1
-1 | -1
-1 | 0 | 2011 | -1 | -1 | -1
-1 0 | | 2012 | -1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1 | -1
-1 | -1
-1 | 0 | 2012 | -1
-1 | -1 | -1
-1 0 | | 2013 | -1 | -1
-1 0 | 2013 | -1 | -1 | -1
-1 0 | | 2014 | -1 | -1
-1 0 | 2014 | -1 | -1 | -1
-1 0 | | 2015 | -1 | -1
-1 0 | 2015 | -1 | -1
_1 | -1
-1 0 | | 2016 | _1 | -1
-1 0 | 2016 | -1 | -1
-1 l 0 | | 2017 | _1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1
_1 | -1
-1 | -1
-1 | 0 | 2017 | -1 | -1
-1 0 | | 2019 | _1 | -1
-1 0 | 2019 | -1 | -1
-1 0 | | 2020 | -1 | -1
-1 0 | 2019 | -1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1 | -1 | -1
-1 | -1
-1 | -1
-1 | l 0 | | 2021 | -1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | -1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | 0 | 2021 | -1 | -1
-1 | -1
-1 | -1
-1 | -1 | -1 | -1
-1 | -1
-1 | -1
-1 | -1
-1 | 0 | | | · ' | | | | | | - | - | - | <u> </u> | | | · · | | <u> </u> | | | | · ' | <u> </u> | <u> </u> | <u> </u> | | Table 15: Annual mean weights-at-age in pounds of recreational and commercial inshore and commercial offshore Red Drum landings used as inputs in the ASAP base model. | | | | | | Recreatio | nal | | | | | - | | | | Cor | mmercial I | Inshore | | | | | |--------------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|----------------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|----------------|----------------| | Year | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | Year | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | | 1982 | 0.59 | 1.74 | 3.54 | 5.18 | 6.32 | 8.67 | 11.51 | 11.75 | 11.84 | 11.92 | 1982 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1983 | 0.85 | 1.47 | 3.25 | 7.23 | 9.38 | 10.58 | 10.90 | 10.93 | 10.95 | 11.18 | 1983 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1984 | 0.91 | 1.55 | 3.81 | 5.77 | 7.64 | 11.31 | 12.56 | 14.39 | 17.12 | 21.80 | 1984 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1985 | 0.80 | 1.68 | 3.22 | 6.16 | 8.02 | 10.13 | 13.15 | 15.11 | 16.49 | 18.62 | 1985 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1986 | 0.75 | 1.67 | 3.42 | 6.01 | 7.95 | 10.83 | 11.92 | 12.49 | 13.87 | 22.05 | 1986 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1987 | 0.92 | 1.54 | 3.20 | 5.29 | 7.61 | 12.34 | 14.60 | 15.71 | 17.36 | 21.63 | 1987 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1988 | 0.97 | 1.85 | 3.47 | 5.26 | 7.94 | 10.82 | 12.41 | 16.60 | 21.23 | 26.15 | 1988 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1989 | 0.99 | 2.40 | 3.97 | 6.19 | 8.43 | 11.26 | 13.28 | 15.02 | 16.29 | 18.53 | 1989 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1990 | 1.20 | 2.29 | 4.06 | 5.54 | 7.46 | 11.02 | 13.64 | 17.28 | 19.28 | 21.30 | 1990 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1991 | 1.02 | 2.23 | 4.42 | 6.48 | 7.98 | 10.07 | 11.99 | 13.81 | 15.67 | 18.46 | 1991 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1992 | 0.91 | 2.09 | 3.37 | 5.96 | 7.86 | 9.69 | 12.55 | 15.64 | 17.98 | 21.47 | 1992 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1993 | 0.86 | 2.24 | 3.94 | 5.50 | 7.93 | 10.65 | 12.83 | 14.63 | 16.48 | 23.10 | 1993 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1994 | 0.87 | 2.31 | 3.98 | 5.64 | 7.45 | 10.61 | 12.99 | 14.81 | 16.91 | 23.13 | 1994 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1995 | 1.07 | 2.33 | 4.07 | 6.00 | 7.78 | 10.46 | 12.53 | 14.59 | 16.54 | 20.83 | 1995 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1996 | 0.93 | 2.36 | 3.92 | 5.61 | 7.52 | 9.99 | 12.72 | 14.68 | 17.00 | 22.13 | 1996 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1997 | 0.83 | 2.28 | 4.46 | 6.31 | 8.07 | 10.48 | 12.71 | 15.20 | 17.73 | 22.55 | 1997 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1998 | 0.92 | 2.11 | 3.98 | 6.13 | 7.95 | 10.95 | 13.48 | 15.49 | 17.23 | 21.33 | 1998 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 1999 | 0.94 | 2.26 | 3.92 | 6.04 | 8.39 | 10.77 | 12.47 | 14.14 | 16.01 | 20.79 | 1999 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2000 | 0.95 | 2.34 | 4.11 | 6.12 | 8.03 | 10.34 | 12.23 | 13.54 | 15.58 | 23.22 | 2000 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2001 | 0.90 | 2.29 | 3.92 | 5.76 | 8.20 | 10.32 | 12.53 | 14.57 | 16.44 | 20.91 | 2001 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2002 | 1.32 | 2.42 | 4.01 | 5.98 | 8.24 | 10.16 | 12.96 | 15.29 | 17.74 | 21.77 | 2002 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2003 | 1.32 | 2.45 | 4.27 | 6.23 | 8.84 | 10.74 | 12.38 | 14.26 | 16.54 | 21.69 | 2003 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2004 | 1.17 | 2.28 | 4.27 | 6.14 | 7.63 | 11.42 | 14.32 | 16.79 | 18.30 | 20.70 | 2004 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2005 | 1.44 | 2.44 | 4.72 | 6.91 | 8.41 | 9.41 | 12.52 | 15.50 | 17.68 | 21.05 | 2005 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2006 | 1.12 | 2.83 | 5.72 | 6.84 | 9.37 | 10.59 | 12.93 | 16.44 | 18.35 | 20.83 | 2006 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2007 | 0.99 | 2.32
2.26 | 4.98 | 7.31
6.97 | 9.31
8.32 | 11.17 | 11.54
13.01 | 14.20
14.82 | 15.84
12.02 | 19.16 | 2007 | 0.49 | 2.15
2.15 | 3.38
3.38 | 5.12
5.12 | 6.69 | 8.36 | 11.10 | 15.67
15.67 | 17.69 | 18.86 | | 2008
2009 | 1.00
1.05 | 2.26 | 4.15
4.30 | 6.32 | 8.96 | 11.37
11.38 | 12.59 | 13.89 | 15.29 | 19.45
18.32 | 2008
2009 | 0.49
0.49 | 2.15 | 3.38 | 5.12 | 6.69
6.69 | 8.36
8.36 | 11.10
11.10 | 15.67 | 17.69
17.69 | 18.86
18.86 | | 2009 | 0.72 | 2.20 | 4.30 | 6.09 | 7.70 | 10.45 | 13.32 | 15.69 | 16.81 | 18.74 | 2009 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2010 | 0.72 | 2.14 | 4.16 | 6.72 | 8.72 | 11.18 | 12.92 | 13.52 | 14.37 | 17.94 | 2010 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2011 | 0.83 | 2.27 | 4.14 | 6.72 | 9.13 | 10.77 | 12.92 | 15.36 | 17.49 | 20.98 | 2011 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2012 | 0.93 | 2.08 | 4.51 | 6.39 | 8.65 | 10.77 | 13.03 | 14.50 | 15.75 | 18.70 | 2012 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2013 | 0.93 | 2.00 | 4.02 | 6.77 | 8.03 | 10.90 | 12.40 | 14.50 | 15.75 | 19.27 | 2013 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2014 | 0.99 | 2.41 | 4.02 | 6.26 | 8.79 | 10.96 | 11.57 | 14.30 | 15.66 | 19.27 | 2014 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2015 | 1.04 | 2.02 | 4.18 | 6.60 | 7.98 | 10.63 | 13.01 | 10.76 | 15.47 | 18.90 | 2015 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2017 | 0.88 | 2.30 | 5.02 | 7.17 | 8.14 | 10.66 | 11.69 | 13.97 | 15.47 | 18.68 | 2016 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2017 | 0.85 | 2.29 | 4.33 | 7.17 | 9.10 | 10.00 | 11.15 | 15.81 | 17.39 | 20.14 | 2017 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2019 | 0.86 | 1.95 | 3.89 | 6.27 | 9.05 | 10.12 | 12.69 | 13.63 | 12.49 | 16.70 | 2019 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2019 | 1.14 | 2.25 | 3.09 | 6.09 | 8.71 | 10.66 | 12.09 | 13.28 | 14.83 | 19.10 | 2019 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2020 | 1.40 | 2.70 | 5.06 | 7.02 | 8.89 | 10.00 | 12.11 | 13.28 | 15.13 | 18.65 | 2020 | 0.49 | 2.15 | 3.38 | 5.12 | 6.69 | 8.36 | 11.10 | 15.67 | 17.69 | 18.86 | | 2021 | 1.40 | 2.10 | 5.00 | 1.02 | 0.03 | 10.20 | 12.07 | 10.00 | 10.10 | 10.03 | 2021 | 0.43 | 2.13 | 3.30 | J. 1Z | 0.03 | 0.00 | 11.10 | 10.07 | 17.03 | 10.00 | Table 15 (continued): | | | | | Com | mercial (| Offshore | | | | | |------|-------|-------|-------|-------|-----------|----------|-------|-------|-------|---------| | Year | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | | 1982 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1983 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1984 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1985 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1986 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1987 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 |
13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1988 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1989 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1990 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1991 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1992 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1993 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1994 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1995 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1996 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1997 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1998 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 1999 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2000 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2001 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2002 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2003 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2004 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2005 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2006 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2007 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2008 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2009 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2010 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2011 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2012 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2013 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2014 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2015 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2016 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2017 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2018 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2019 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2020 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | | 2021 | 3.86 | 4.30 | 9.16 | 11.30 | 12.53 | 13.93 | 15.37 | 16.46 | 17.25 | 18.76 | Table 16: Annual Red Drum catch-at-size in total length inch bins from the LDWF fishery-independent marine trammel net survey. | Year | n | <10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40+ | |--------------|------------|-----|----|---------|-----|----------|----------|---------|---------|----|----------|--------|--------|---------|--------|----|----|----------|----------|---------|---------|----------|---------|---------|---------|----------|----------|----------|----------|----------|----|----------| | 1985 | 21 | 0 | | | 14 | 1 | 1 | 2 | 1 | | | | | | | | 1 | | 1 | | | | | | | | | | | | | 0 | | 1986 | 140 | 0 | | 4 | 10 | 20 | 40 | 21 | 15 | 5 | 3 | 1 | 2 | 1 | 1 | 1 | 3 | 5 | 4 | 4 | | | | | | | | | | | | 0 | | 1987 | 208 | 1 | | 12 | 48 | 47 | 46 | 32 | 12 | 2 | | | | 2 | 4 | 1 | 1 | | | | | | 1 | | | | | | | | | 0 | | 1988 | 347 | 1 | 1 | 14 | 47 | 63 | 58 | 35 | 19 | 10 | 4 | 7 | 10 | 6 | 26 | 22 | 13 | 2 | 3 | 1 | 1 | 2 | | | | | | | | | | 1 | | 1989 | 318 | 0 | | 11 | 21 | 27 | 18 | 23 | 5 | 5 | 13 | 24 | 36 | 31 | 37 | 28 | 20 | 8 | 2 | 6 | 1 | | | | 1 | | | | | | | 0 | | 1990 | 66 | 0 | | | | 2 | 8 | 12 | 13 | 8 | 7 | 2 | | 2 | 4 | 2 | 2 | 2 | 1 | | | 1 | | | | | | | | | | 0 | | 1991 | 578 | 1 | 3 | 84 | 172 | 155 | 87 | 37 | 13 | 7 | 1 | | 1 | | 2 | | 3 | 4 | 3 | 2 | 2 | | | | | | | | | 1 | | 1 | | 1992 | 815 | 1 | 5 | 91 | 219 | 144 | 53 | 24 | 16 | 21 | 36 | 48 | 43 | 59 | 31 | 11 | 5 | 4 | 1 | 1 | 1 | | | | | | | | | | | 1 | | 1993 | 840 | 0 | 1 | 47 | 157 | 147 | 84 | 41 | 15 | 20 | 41 | 49 | 45 | 31 | 27 | 42 | 44 | 16 | 16 | 8 | 6 | | | | | | | | | | | 3 | | 1994 | 1605 | 0 | 34 | 380 | 481 | 337 | 112 | 12 | 4 | 9 | 30 | 38 | 24 | 34 | 29 | 27 | 15 | 12 | 13 | 3 | 3 | 3 | 5 | | | | | | | | | 0 | | 1995 | 1551 | 2 | 3 | 68 | 171 | 233 | 146 | 64 | 58 | 95 | 119 | 113 | 92 | 51 | 40 | 51 | 68 | 66 | 18 | 32 | 14 | 23 | 12 | 5 | 4 | 1 | 1 | | | | | 0 | | 1996 | 613 | 0 | 1 | 33 | 70 | 90 | 59 | 26 | 9 | 32 | 24 | 45 | 36 | 31 | 36 | 31 | 17 | 23 | 18 | 12 | 10 | 3 | 1 | 2 | 1 | 1 | 1 | | | 1 | | 0 | | 1997 | 541 | 4 | 2 | 35 | 103 | 104 | 56 | 24 | 3 | 10 | 13 | 9 | 22 | 14 | 23 | 18 | 23 | 18 | 18 | 15 | 12 | 7 | 4 | | | 2 | 1 | | | 1 | 1 | 1 | | 1998 | 484 | 0 | | 19 | 62 | 86 | 86 | 45 | 16 | 6 | 11 | 12 | 12 | 18 | 16 | 13 | 12 | 10 | 14 | 11 | 3 | 8 | 6 | 1 | | 3 | 2 | | 4 | 1 | 1 | 4 | | 1999 | 710 | 0 | 1 | 30 | 93 | 107 | 126 | 72 | 51 | 18 | 12 | 10 | 21 | 21 | 25 | 32 | 17 | 9 | 8 | 16 | 12 | 11 | 7 | 4 | | | 2 | 1 | 1 | | 1 | 0 | | 2000 | 770 | 2 | 2 | 21 | 80 | 97 | 79 | 59 | 19 | 22 | 28 | 62 | 61 | 48 | 33 | 28 | 23 | 22 | 18 | 14 | 13 | 5 | 11 | 2 | 2 | 3 | 4 | 3 | 1 | | 1 | 6 | | 2001 | 525 | 0 | 2 | 36 | 68 | 70 | 25 | 9 | 9 | 16 | 28 | 42 | 40 | 29 | 35 | 21 | 13 | 25 | 15 | 13 | 6 | 5 | 2 | 4 | 1 | 4 | | 5 | | 1 | 1 | 0 | | 2002 | 719 | 1 | 1 | 27 | 123 | 148 | 94 | 29 | 20 | 13 | 28 | 22 | 19 | 24 | 18 | 13 | 14 | 21 | 27 | 16 | 17 | 10 | 7 | 4 | 4 | 4 | 3 | 5 | 1 | 1 | 2 | 4 | | 2003 | 839 | 1 | 10 | 154 | 191 | 83 | 26 | 4 | 1 | 17 | 30 | 28 | 20 | 28 | 21 | 22 | 26 | 21 | 27 | 35 | 21 | 10 | 15 | 9 | 11 | 6 | 5 | 3 | 4 | 4 | 5 | 3 | | 2004 | 554 | 0 | | 2 | 26 | 48 | 58 | 27 | 22 | 8 | 16 | 25 | 32 | 37 | 40 | 32 | 25 | 19 | 24 | 13 | 14 | 12 | 10 | 19 | 7 | 7 | 6 | 5 | 7 | 6 | 1 | 6 | | 2005 | 537 | 0 | _ | 13 | 58 | 81 | 65 | 32 | 21 | 10 | 13 | 17 | 26 | 18 | 14 | 24 | 14 | 20 | 10 | 14 | 14 | 13 | 7 | 11 | .5 | 9 | 6 | 5 | 3 | 2 | 4 | 6 | | 2006 | 444 | 1 | 2 | 27 | 69 | 79 | 51 | 16 | 14 | 6 | 5 | 10 | 8 | 10 | 13 | 9 | 16 | 8 | 13 | 9 | 6 | 7 | 5 | 3 | 11 | 12 | .7 | 7 | 7 | 5 | 5 | 3 | | 2007 | 456 | 5 | / | 30 | 65 | 57 | 17 | 28 | 10 | 9 | 11 | 15 | 22 | 17 | 15 | 8 | 5 | 9 | 3 | 9 | 10 | 10 | 6 | 12 | 11 | 10 | 15 | 13 | 10 | 8 | 1 | 8 | | 2008 | 522 | 0 | 6 | 31 | 45 | 52 | 37 | 9 | 19 | 25 | 19 | 19 | 16 | 16 | 10 | 8 | 8 | 6 | 6 | / | 5 | 5 | 2 | 5 | 12 | 24 | 38 | 26 | 35 | 8 | 8 | 15 | | 2009 | 976 | 0 | 15 | 132 | 159 | 151 | 26 | 27 | 12 | 4 | 16 | 32 | 26 | 16 | 34 | 43 | 39 | 24 | 30 | 40 | 24 | 26 | 18 | 8 | / | 11 | 8 | 8 | 10 | / | 12 | 10 | | 2010 | 1485 | 5 | 9 | 97 | 125 | 119 | 64 | 32 | 35 | 35 | 26 | 63 | 58 | 81 | 49 | 37 | 35 | 36 | 59 | 53 | 48 | 34 | 25 | 21 | 18 | 23 | 39 | 65 | 76 | 66 | 26 | 24 | | 2011 | 986 | 1 | 4 | 37 | 65 | 80 | 51 | 27 | 17 | 15 | 20 | 36 | 26 | 20 | 23 | 28 | 20 | 27 | 22 | 32 | 18 | 17 | 10 | 8 | 16 | 41 | 46 | 68 | 58 | 58 | 45 | 51 | | 2012 | 1107 | 1 | 9 | 101 | 177 | 93 | 32 | 10 | 6 | 9 | 7 | 10 | 16 | 8 | 8 | 14 | 17 | 14 | 12 | 15 | 23 | 24 | 29 | 25 | 41 | 53 | 67 | 57 | 77 | 48 | 42 | 61 | | 2013 | 757 | 2 | 5 | 54 | 67 | 53 | 24 | 13 | 25 | 26 | 54 | 45 | 38 | 34 | 27 | 26 | 40 | 20 | 26 | 21 | 21 | 26 | 11 | 10 | 7 | 12 | 10 | 8 | 21 | 11 | 8 | 16 | | 2014 | 527 | 0 | 1 | 32 | 48 | 22 | 13 | , | 6 | 10 | 13 | 11 | 8 | 12 | 6 | 14 | 21 | 29 | 21 | 13 | 16 | 14 | 8 | 12 | 23 | 23 | 31 | 20 | 29 | 14 | 23 | 25 | | 2015 | 422 | 0 | 4 | 4 | 21 | 24 | 3 | 6 | 3 | 1 | 4 | 2
7 | 2
5 | 2 | 4 | 12 | 3 | 10 | 12 | 13 | 26 | 13 | 14 | 16 | 15 | 22 | 23 | 43 | 42 | 27 | 28 | 36 | | 2016 | 523 | | 7 | 16 | 84 | 60 | 27 | 16 | 24 | 4 | 4 | • | - | 5
15 | 11 | 12 | 12 | 19 | 24 | 13
8 | 19 | 17 | 16 | 15 | 19 | 11 | 17 | 21 | 19 | 15 | 9 | 17
15 | | 2017 | 962 | 1 1 | 6 | 128 | 221 | 116 | 80 | 24 | 24 | 18 | 20 | 29 | 15 | 15 | 16 | 8 | 19 | 14 | 19 | - | 17 | 11 | 8 | 10 | 25 | 10 | 21 | 29 | 18 | 15 | 11 | 15 | | 2018
2019 | 436
387 | 14 | 6 | 11
8 | 18 | 10 | 12
15 | 9 | 12 | 13 | 11
11 | 8
9 | 10 | 11
8 | 4
5 | 13 | 12 | 27 | 31
16 | 39 | 17 | 12 | 6
12 | 21 | 10
6 | 12 | 15
27 | 25 | 29
15 | 12
11 | 6 | 12 | | 2019 | 344 | 0 | | 0 | 22 | 20
11 | 15
12 | 21
6 | 12
3 | 13 | 11 | 2 | 6 | _ | 5
6 | 8 | 0 | 18
11 | 16 | 12
6 | 13
9 | 14
12 | 13
8 | 21
9 | 22 | 18
23 | 27
33 | 20
34 | 15
31 | 19 | 20 | 10 | | | _ | 0 | | | 2 | 11 | 2 | 2 | 2 | ' | | 3 | _ | 13
2 | 2 | | 4 | 2 | 1 | 7 | - | | - | - | | | | - | | | | 22
17 | | 2021 | 254 | U | | 1 | 3 | 1 | | | | | | 3 | 5 | | | 4 | 2 | | 4 | | 18 | 26 | 19 | 16 | 24 | 18 | 13 | 22 | 14 | 13 | 12 | 17 | Table 17: Annual Red Drum catch-at-size as total length in inches from the LDWF component of the SEAMAP nearshore bottom long line survey. | Year | n | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | |------|-----| | 2015 | 145 | | | | | 1 | 6 | 3 | 16 | 18 | 28 | 16 | 28 | 15 | 8 | 5 | | | 1 | | | | | | | | 2016 | 116 | | | | 2 | | | 3 | 1 | 9 | 14 | 17 | 19 | 21 | 23 | 5 | 2 | | | | | | | | | | 2017 | 223 | | | 1 | | 3 | 7 | 7 | 12 | 28 | 37 | 56 | 37 | 22 | 8 | 4 | | | | | 1 | | | | | | 2018 | 152 | | | | | | 2 | 8 | 5 | 12 | 26 | 30 | 35 | 17 | 9 | 7 | 1 | | | |
| | | | | | 2019 | 262 | | 1 | 1 | | 2 | 2 | 7 | 19 | 25 | 37 | 56 | 39 | 43 | 24 | 5 | | | 1 | | | | | | | | 2020 | 28 | | | 1 | | 4 | | 1 | | 5 | 5 | 8 | 1 | 2 | 1 | | | | | | | | | | | | 2021 | 56 | | | | | | | | 1 | 10 | 9 | 15 | 9 | 10 | 2 | | | | | | | | | | | Table 18: Probabilities of age given length used for age assignments of Red Drum catches from the LDWF fishery-independent marine trammel net survey. | TL_in | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | |-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | 8 | 0.18 | 0.82 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 9 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 14 | 0.00 | 0.92 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 15 | 0.00 | 0.83 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 16 | 0.00 | 0.67 | 0.32 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.00 | 0.43 | 0.55 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.00 | 0.21 | 0.75 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 19 | 0.00 | 0.08 | 0.84 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 20 | 0.00 | 0.02 | 0.83 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | 0.00 | 0.01 | 0.76 | 0.23 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 22 | 0.00 | 0.00 | 0.64 | 0.33 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | 0.00 | 0.00 | 0.50 | 0.45 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | 0.00 | 0.00 | 0.35 | 0.55 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 25 | 0.00 | 0.00 | 0.22 | 0.60 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 26 | 0.00 | 0.00 | 0.12 | 0.59 | 0.28 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | | 27 | 0.00 | 0.00 | 0.06 | 0.51 | 0.38 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | | 28 | 0.00 | 0.00 | 0.03 | 0.40 | 0.46 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | | 29 | 0.00 | 0.00 | 0.01 | 0.28 | 0.49 | 0.21 | 0.01 | 0.00 | 0.00 | 0.00 | | 30 | 0.00 | 0.00 | 0.00 | 0.17 | 0.45 | 0.32 | 0.04 | 0.01 | 0.00 | 0.01 | | 31 | 0.00 | 0.00 | 0.00 | 0.09 | 0.33 | 0.37 | 0.11 | 0.03 | 0.01 | 0.07 | | 32 | 0.00 | 0.00 | 0.00 | 0.03 | 0.18 | 0.30 | 0.17 | 0.06 | 0.03 | 0.23 | | 33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.07 | 0.15 | 0.16 | 0.08 | 0.04 | 0.48 | | 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.06 | 0.10 | 0.07 | 0.05 | 0.69 | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.05 | 0.05 | 0.04 | 0.83 | | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.90 | | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.95 | | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.97 | | 39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.98 | | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | | 43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | Table 19: Annual Red Drum survey age composition and sample sizes from the LDWF fishery-independent marine trammel net survey. | Year | n | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | |--------------|------------|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | 1985 | 21 | 0.000 | 0.809 | 0.107 | 0.055 | 0.027 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | | 1986 | 140 | 0.000 | 0.621 | 0.252 | 0.082 | 0.040 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | | 1987 | 208 | 0.000 | 0.801 | 0.171 | 0.021 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | | 1988 | 347 | 0.003 | 0.578 | 0.262 | 0.123 | 0.027 | 0.003 | 0.000 | 0.000 | 0.000 | 0.003 | | 1989 | 318 | 0.000 | 0.288 | 0.416 | 0.240 | 0.048 | 0.004 | 0.001 | 0.000 | 0.000 | 0.002 | | 1990 | 66 | 0.000 | 0.369 | 0.466 | 0.125 | 0.033 | 0.006 | 0.001 | 0.000 | 0.000 | 0.000 | | 1991 | 578 | 0.000 | 0.861 | 0.109 | 0.016 | 0.008 | 0.001 | 0.000 | 0.000 | 0.000 | 0.003 | | 1992 | 815 | 0.000 | 0.630 | 0.275 | 0.083 | 0.009 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | | 1993 | 840 | 0.000 | 0.531 | 0.284 | 0.140 | 0.037 | 0.004 | 0.000 | 0.000 | 0.000 | 0.004 | | 1994 | 1605 | 0.000 | 0.802 | 0.131 | 0.050 | 0.014 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | | 1995 | 1551 | 0.000 | 0.434 | 0.343 | 0.147 | 0.053 | 0.014 | 0.003 | 0.001 | 0.000 | 0.004 | | 1996 | 613 | 0.000 | 0.432 | 0.324 | 0.169 | 0.056 | 0.011 | 0.002 | 0.001 | 0.000 | 0.006 | | 1997 | 541 | 0.000 | 0.557 | 0.201 | 0.144 | 0.068 | 0.017 | 0.002 | 0.001 | 0.000 | 0.010 | | 1998 | 484 | 0.000 | 0.556 | 0.228 | 0.113 | 0.052 | 0.016 | 0.003 | 0.001 | 0.001 | 0.029 | | 1999 | 710 | 0.000 | 0.562 | 0.248 | 0.111 | 0.049 | 0.017 | 0.003 | 0.001 | 0.001 | 0.009 | | 2000 | 770 | 0.003 | 0.404 | 0.334 | 0.158 | 0.055 | 0.016 | 0.004 | 0.002 | 0.001 | 0.024 | | 2001 | 525 | 0.000 | 0.390 | 0.328 | 0.179 | 0.062 | 0.015 | 0.004 | 0.002 | 0.001 | 0.021 | | 2002 | 719 | 0.000 | 0.549 | 0.215 | 0.116 | 0.063 | 0.021 | 0.005 | 0.002 | 0.001 | 0.029 | | 2003 | 839 | 0.000 | 0.541 | 0.174 | 0.129 | 0.075 | 0.028 | 0.008 | 0.003 | 0.002 | 0.042 | | 2004 | 554 | 0.000 | 0.272 | 0.296 | 0.204 | 0.091 | 0.038 | 0.013 | 0.006 | 0.004 | 0.076 | | 2005 | 537 | 0.000 | 0.431 | 0.239 | 0.140 | 0.073 | 0.031 | 0.010 | 0.005 | 0.003 | 0.067 | | 2006 | 444 | 0.000 | 0.517 | 0.170 | 0.106 | 0.057 | 0.024 | 0.011 | 0.007 | 0.005 | 0.104 | | 2007 | 456 | 0.007 | 0.425 | 0.206 | 0.099 | 0.055 | 0.033 | 0.016 | 0.009 | 0.006 | 0.144 | | 2008 | 522 | 0.000 | 0.344 | 0.210 | 0.079 | 0.035 | 0.020 | 0.016 | 0.013 | 0.011 | 0.273 | | 2009 | 976 | 0.000 | 0.496 | 0.165 | 0.143 | 0.083 | 0.031 | 0.008 | 0.004 | 0.003 | 0.068 | | 2010 | 1485 | 0.001 | 0.295 | 0.208 | 0.144 | 0.084 | 0.034 | 0.012 | 0.008 | 0.007 | 0.207 | | 2011 | 986 | 0.001 | 0.254 | 0.160 | 0.110 | 0.063 | 0.027 | 0.015 | 0.012 | 0.011 | 0.348 | | 2012 | 1107 | 0.000 | 0.364 | 0.074 | 0.059 | 0.055 | 0.041 | 0.023 | 0.016 | 0.012 | 0.355 | | 2013 | 757 | 0.000 | 0.294 | 0.289 | 0.170 | 0.085 | 0.033 | 0.009 | 0.005 | 0.004 | 0.111 | | 2014 | 526
422 | 0.000 | 0.230 | 0.137 | 0.141 | 0.093 | 0.044
0.062 | 0.023
0.029 | 0.015 | 0.011 | 0.307 | | 2015 | 523 | 0.000 | 0.129 | 0.051 | 0.085 | 0.100 | | | 0.019 | 0.016 | 0.508 | | 2016
2017 | 962 | 0.000 | 0.366
0.573 | 0.110 | 0.120
0.069 | 0.097
0.037 | 0.051
0.019 | 0.021
0.010 | 0.012
0.007 | 0.008
0.005 | 0.216
0.128 | | 2017 | 436 | 0.000 | 0.573 | 0.153
0.158 | 0.069 | 0.037 | 0.019 | 0.010 | 0.007 | 0.005 | 0.128 | | 2018 | 387 | 0.014 | 0.175 | 0.156 | 0.165 | 0.137 | 0.048 | 0.017 | 0.011 | 0.009 | 0.247 | | 2019 | 344 | 0.000 | 0.214 | 0.169 | 0.130 | 0.103 | 0.050 | 0.027 | 0.018 | 0.011 | 0.207 | | 2020 | 254 | 0.000 | 0.100 | 0.069 | 0.099 | 0.077 | 0.032 | 0.053 | 0.023 | 0.019 | 0.308 | | 2021 | 204 | 0.000 | 0.004 | 0.004 | 0.030 | 0.148 | 0.113 | 0.001 | 0.027 | 0.019 | 0.448 | Table 20: Annual Red Drum survey age composition and sample sizes from the LDWF component of the SEAMAP nearshore bottom long-line survey. | Year | n | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | |------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | 2015 | 145 | 0.000 | 0.000 | 0.000 | 0.007 | 0.022 | 0.034 | 0.032 | 0.028 | 0.026 | 0.851 | | 2016 | 116 | 0.000 | 0.000 | 0.001 | 0.007 | 0.013 | 0.013 | 0.015 | 0.018 | 0.020 | 0.913 | | 2017 | 223 | 0.000 | 0.000 | 0.001 | 0.010 | 0.023 | 0.030 | 0.028 | 0.027 | 0.026 | 0.855 | | 2018 | 167 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 | 0.013 | 0.007 | 0.007 | 0.967 | | 2019 | 293 | 0.000 | 0.000 | 0.000 | 0.008 | 0.011 | 0.000 | 0.011 | 0.015 | 0.004 | 0.951 | | 2020 | 32 | 0.000 | 0.000 | 0.033 | 0.067 | 0.000 | 0.100 | 0.033 | 0.033 | 0.000 | 0.733 | | 2021 | 60 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | Table 21: Annual Red Drum age composition and sample sizes of the MARFIN dataset used to represent the NMFS mark-recapture estimates. | Year | n | Age-1 | Age-2 | Age-3 | Age-4 | Age-5 | Age-6 | Age-7 | Age-8 | Age-9 | Age-10+ | |------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | 1987 | 562 | 0.000 | 0.000 | 0.043 | 0.036 | 0.055 | 0.053 | 0.032 | 0.041 | 0.064 | 0.676 | | 1997 | 556 | 0.000 | 0.002 | 0.004 | 0.043 | 0.070 | 0.113 | 0.160 | 0.018 | 0.020 | 0.570 | Table 22: Summary of objective function components and likelihood values of the ASAP base model. | Objective function =12515. | 0 | | | |----------------------------|--------|------|---------| | Component | Lambda | ESS | Obj_fun | | Catch_Fleet_Total | 4 | | 332.86 | | Index_Fit_Total | 3 | | -22.76 | | Catch_Age_Comps | | 6450 | 8409.93 | | Index_Age_Comps | | 2859 | 3666.57 | | Sel_Params_Total | 14 | | 12.36 | | Index_Sel_Params_Total | 8 | | 5.36 | | q_dev (IOA NMFS) | 1 | | -9.21 | | N_year1_dev | 1 | | 135.49 | | Recruit_devs | 1 | | -15.61 | Table 23: Annual Red Drum abundance-at-age and total stock size estimates from the ASAP base model. | Year | Age_1 | Age_2 | Age_3 | Age_4 | Age_5 | Age_6 | Age_7 | Age_8 | Age_9 | Age_10+ | Totals | |------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------| | 1982 | 3,532,120 | 1,802,770 | 1,164,770 | 753,774 | 296,153 | 162,926 | 175,665 | 189,543 | 197,425 | 5,496,760 | 13,771,906 | | 1983 | 3,759,580 | 1,932,190 | 956,761 | 617,822 |
512,868 | 239,506 | 140,848 | 155,268 | 168,726 | 5,099,880 | 13,583,449 | | 1984 | 4,225,460 | 2,093,510 | 1,040,530 | 479,257 | 404,826 | 409,515 | 206,165 | 124,158 | 137,868 | 4,706,790 | 13,828,079 | | 1985 | 4,086,860 | 2,532,130 | 1,237,790 | 500,493 | 302,284 | 318,879 | 350,383 | 180,731 | 109,593 | 4,300,810 | 13,919,953 | | 1986 | 3,754,080 | 2,466,420 | 1,517,550 | 605,490 | 311,810 | 233,216 | 266,417 | 299,698 | 155,624 | 3,819,190 | 13,429,495 | | 1987 | 3,603,440 | 2,339,060 | 1,418,060 | 443,688 | 264,428 | 206,972 | 179,995 | 213,733 | 242,712 | 3,238,720 | 12,150,808 | | 1988 | 2,867,880 | 2,115,040 | 1,248,580 | 442,888 | 220,200 | 194,716 | 175,870 | 158,865 | 190,481 | 3,122,370 | 10,736,890 | | 1989 | 1,656,690 | 1,999,830 | 1,513,310 | 913,497 | 355,738 | 187,576 | 170,539 | 156,124 | 141,834 | 2,976,430 | 10,071,568 | | 1990 | 3,231,080 | 1,143,890 | 1,297,670 | 1,046,430 | 714,587 | 297,888 | 162,641 | 150,616 | 139,050 | 2,800,490 | 10,984,342 | | 1991 | 6,926,780 | 2,235,640 | 759,270 | 918,744 | 828,944 | 601,952 | 259,020 | 143,846 | 134,248 | 2,640,860 | 15,449,304 | | 1992 | 5,830,070 | 4,793,560 | 1,486,580 | 538,454 | 728,372 | 698,525 | 523,473 | 229,090 | 128,209 | 2,492,950 | 17,449,283 | | 1993 | 6,048,970 | 4,043,300 | 3,260,820 | 1,076,650 | 431,643 | 617,206 | 609,168 | 463,669 | 204,357 | 2,355,570 | 19,111,353 | | 1994 | 7,621,000 | 4,202,010 | 2,798,600 | 2,399,580 | 870,133 | 367,209 | 539,243 | 540,015 | 413,746 | 2,300,290 | 22,051,826 | | 1995 | 5,622,630 | 5,302,660 | 2,958,850 | 2,092,240 | 1,955,060 | 743,156 | 321,417 | 478,427 | 482,040 | 2,438,290 | 22,394,770 | | 1996 | 4,347,420 | 3,895,550 | 3,569,340 | 2,122,460 | 1,669,520 | 1,653,300 | 647,594 | 284,656 | 426,841 | 2,624,390 | 21,241,071 | | 1997 | 5,601,000 | 3,011,210 | 2,614,520 | 2,553,480 | 1,691,430 | 1,411,010 | 1,440,390 | 573,501 | 253,972 | 2,742,500 | 21,893,013 | | 1998 | 5,945,670 | 3,871,520 | 1,977,520 | 1,833,310 | 2,013,850 | 1,422,200 | 1,226,220 | 1,274,020 | 511,368 | 2,693,240 | 22,768,918 | | 1999 | 5,328,200 | 4,121,920 | 2,623,140 | 1,427,220 | 1,467,900 | 1,706,110 | 1,240,590 | 1,086,670 | 1,137,160 | 2,880,850 | 23,019,760 | | 2000 | 4,903,250 | 3,680,700 | 2,689,480 | 1,828,430 | 1,122,130 | 1,232,360 | 1,481,570 | 1,096,900 | 968,762 | 3,608,750 | 22,612,332 | | 2001 | 4,318,560 | 3,366,630 | 2,252,320 | 1,767,130 | 1,394,580 | 928,235 | 1,062,680 | 1,305,730 | 976,493 | 4,111,300 | 21,483,658 | | 2002 | 3,970,100 | 2,955,370 | 1,989,240 | 1,432,950 | 1,325,690 | 1,144,340 | 797,380 | 934,919 | 1,161,510 | 4,569,430 | 20,280,929 | | 2003 | 3,634,800 | 2,721,440 | 1,777,300 | 1,286,270 | 1,083,930 | 1,092,180 | 984,863 | 702,095 | 831,930 | 5,146,860 | 19,261,668 | | 2004 | 3,247,770 | 2,493,320 | 1,648,640 | 1,157,020 | 976,440 | 894,598 | 940,810 | 867,574 | 624,913 | 5,371,400 | 18,222,485 | | 2005 | 5,195,980 | 2,225,530 | 1,494,020 | 1,062,510 | 873,784 | 803,851 | 769,685 | 828,307 | 772,010 | 5,387,680 | 19,413,357 | | 2006 | 5,809,700 | 3,579,590 | 1,410,890 | 1,014,220 | 824,339 | 728,960 | 696,086 | 679,771 | 738,203 | 5,536,570 | 21,018,329 | | 2007 | 4,399,330 | 4,015,020 | 2,346,150 | 987,620 | 799,415 | 693,047 | 633,572 | 615,836 | 606,304 | 5,641,040 | 20,737,334 | | 2008 | 4,483,190 | 3,035,210 | 2,585,030 | 1,615,520 | 771,834 | 669,272 | 601,128 | 559,972 | 549,010 | 5,615,950 | 20,486,116 | | 2009 | 5,221,960 | 3,086,620 | 1,911,640 | 1,744,280 | 1,249,420 | 642,888 | 579,091 | 530,690 | 498,947 | 5,541,520 | 21,007,056 | | 2010 | 4,049,680 | 3,575,640 | 1,834,800 | 1,222,970 | 1,312,310 | 1,026,680 | 552,636 | 509,635 | 472,148 | 5,427,670 | 19,984,169 | | 2011 | 3,624,130 | 2,748,330 | 1,934,410 | 1,076,230 | 879,753 | 1,054,910 | 873,270 | 483,917 | 452,348 | 5,298,510 | 18,425,808 | | 2012 | 4,474,040 | 2,458,180 | 1,478,220 | 1,128,510 | 771,828 | 706,025 | 896,425 | 764,216 | 429,330 | 5,163,060 | 18,269,834 | | 2013 | 2,583,240 | 3,050,170 | 1,395,380 | 906,323 | 830,497 | 627,360 | 603,698 | 786,870 | 679,041 | 5,023,210 | 16,485,789 | | 2014 | 2,657,420 | 1,738,240 | 1,507,950 | 753,234 | 624,445 | 653,543 | 528,117 | 525,966 | 696,672 | 5,116,160 | 14,801,747 | | 2015 | 2,698,430 | 1,795,100 | 895,285 | 845,326 | 529,229 | 496,155 | 552,737 | 461,160 | 466,190 | 5,217,030 | 13,956,642 | | 2016 | 4,295,580 | 1,809,560 | 856,053 | 467,483 | 572,433 | 412,919 | 415,923 | 480,575 | 407,871 | 5,098,300 | 14,816,697 | | 2017 | 3,735,150 | 2,905,790 | 946,069 | 486,523 | 330,747 | 456,340 | 349,754 | 363,417 | 426,043 | 4,942,480 | 14,942,313 | | 2018 | 1,990,060 | 2,511,970 | 1,428,270 | 507,959 | 334,247 | 259,894 | 383,859 | 304,592 | 321,676 | 4,817,030 | 12,859,557 | | 2019 | 1,446,350 | 1,319,560 | 1,063,300 | 668,170 | 324,919 | 253,568 | 214,918 | 331,547 | 268,525 | 4,606,100 | 10,496,957 | | 2020 | 1,394,100 | 966,122 | 603,718 | 534,378 | 443,547 | 251,026 | 211,541 | 186,415 | 292,881 | 4,371,810 | 9,255,538 | | 2021 | 1,693,560 | 923,801 | 406,188 | 280,667 | 340,697 | 335,934 | 207,415 | 182,636 | 164,304 | 4,180,800 | 8,716,002 | Table 24: Annual age-specific, apical, and average (N-weighted) Red Drum fishing mortality rates along with the escapement rates (E) of juvenile fish and F rates of adults (%) estimated from the ASAP base model. | Year | Age_1 | Age_2 | Age_3 | Age 4 | Age_5 | Age_6 | Age_7 | Age_8 | Age_9 | Age 10 | Apical F | Avg. F | Escape | F adults | |------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|----------|--------|--------|----------| | 1982 | 0.254 | 0.428 | 0.477 | 0.251 | 0.090 | 0.031 | 0.013 | 0.008 | 0.007 | 0.006 | 0.646 | 0.180 | 22.8% | 8.4% | | 1983 | 0.236 | 0.413 | 0.534 | 0.289 | 0.103 | 0.035 | 0.016 | 0.011 | 0.009 | 0.009 | 0.693 | 0.183 | 21.2% | 10.0% | | 1984 | 0.163 | 0.320 | 0.575 | 0.327 | 0.117 | 0.041 | 0.022 | 0.017 | 0.015 | 0.015 | 0.691 | 0.163 | 23.0% | 13.0% | | 1985 | 0.156 | 0.306 | 0.558 | 0.339 | 0.137 | 0.065 | 0.046 | 0.042 | 0.040 | 0.040 | 0.689 | 0.182 | 23.2% | 23.4% | | 1986 | 0.124 | 0.347 | 1.073 | 0.694 | 0.288 | 0.144 | 0.110 | 0.103 | 0.101 | 0.101 | 1.228 | 0.295 | 8.6% | 46.8% | | 1987 | 0.184 | 0.422 | 1.007 | 0.567 | 0.184 | 0.048 | 0.015 | 0.007 | 0.005 | 0.005 | 1.129 | 0.280 | 9.9% | 11.8% | | 1988 | 0.012 | 0.129 | 0.155 | 0.085 | 0.038 | 0.018 | 0.009 | 0.005 | 0.004 | 0.003 | 0.167 | 0.052 | 66.4% | 4.7% | | 1989 | 0.021 | 0.226 | 0.212 | 0.112 | 0.055 | 0.028 | 0.014 | 0.008 | 0.005 | 0.003 | 0.231 | 0.094 | 54.2% | 6.9% | | 1990 | 0.019 | 0.204 | 0.188 | 0.099 | 0.050 | 0.025 | 0.013 | 0.007 | 0.004 | 0.003 | 0.206 | 0.064 | 57.8% | 6.2% | | 1991 | 0.019 | 0.202 | 0.187 | 0.098 | 0.049 | 0.025 | 0.013 | 0.007 | 0.004 | 0.003 | 0.204 | 0.057 | 58.1% | 6.2% | | 1992 | 0.017 | 0.179 | 0.166 | 0.087 | 0.044 | 0.022 | 0.011 | 0.006 | 0.004 | 0.003 | 0.181 | 0.075 | 61.8% | 5.5% | | 1993 | 0.015 | 0.162 | 0.150 | 0.079 | 0.040 | 0.020 | 0.010 | 0.006 | 0.004 | 0.003 | 0.164 | 0.071 | 64.7% | 5.1% | | 1994 | 0.014 | 0.145 | 0.134 | 0.071 | 0.036 | 0.018 | 0.010 | 0.006 | 0.004 | 0.003 | 0.147 | 0.059 | 67.7% | 4.8% | | 1995 | 0.018 | 0.190 | 0.175 | 0.092 | 0.046 | 0.023 | 0.011 | 0.006 | 0.004 | 0.002 | 0.191 | 0.087 | 60.1% | 5.6% | | 1996 | 0.018 | 0.193 | 0.178 | 0.093 | 0.046 | 0.023 | 0.012 | 0.006 | 0.003 | 0.002 | 0.194 | 0.084 | 59.7% | 5.6% | | 1997 | 0.020 | 0.214 | 0.198 | 0.103 | 0.051 | 0.025 | 0.013 | 0.007 | 0.004 | 0.002 | 0.216 | 0.077 | 56.3% | 6.2% | | 1998 | 0.017 | 0.183 | 0.169 | 0.088 | 0.044 | 0.022 | 0.011 | 0.006 | 0.003 | 0.002 | 0.184 | 0.064 | 61.2% | 5.3% | | 1999 | 0.021 | 0.221 | 0.204 | 0.107 | 0.053 | 0.026 | 0.013 | 0.007 | 0.004 | 0.002 | 0.222 | 0.081 | 55.3% | 6.4% | | 2000 | 0.027 | 0.285 | 0.263 | 0.137 | 0.068 | 0.033 | 0.016 | 0.008 | 0.004 | 0.003 | 0.286 | 0.102 | 46.6% | 7.8% | | 2001 | 0.030 | 0.320 | 0.295 | 0.153 | 0.076 | 0.037 | 0.018 | 0.009 | 0.005 | 0.003 | 0.321 | 0.109 | 42.5% | 8.6% | | 2002 | 0.029 | 0.303 | 0.279 | 0.145 | 0.072 | 0.035 | 0.017 | 0.009 | 0.005 | 0.003 | 0.303 | 0.096 | 44.5% | 8.3% | | 2003 | 0.028 | 0.295 | 0.272 | 0.142 | 0.070 | 0.034 | 0.017 | 0.008 | 0.004 | 0.003 | 0.296 | 0.089 | 45.4% | 8.1% | | 2004 | 0.029 | 0.306 | 0.282 | 0.147 | 0.072 | 0.035 | 0.017 | 0.009 | 0.005 | 0.003 | 0.307 | 0.090 | 44.1% | 8.3% | | 2005 | 0.024 | 0.250 | 0.230 | 0.120 | 0.059 | 0.029 | 0.014 | 0.007 | 0.004 | 0.002 | 0.251 | 0.065 | 51.3% | 6.9% | | 2006 | 0.020 | 0.216 | 0.200 | 0.104 | 0.051 | 0.025 | 0.012 | 0.006 | 0.003 | 0.002 | 0.217 | 0.065 | 56.0% | 6.1% | | 2007 | 0.022 | 0.234 | 0.216 | 0.113 | 0.056 | 0.027 | 0.013 | 0.007 | 0.004 | 0.002 | 0.235 | 0.084 | 53.4% | 6.5% | | 2008 | 0.024 | 0.256 | 0.236 | 0.123 | 0.061 | 0.030 | 0.015 | 0.007 | 0.004 | 0.002 | 0.257 | 0.087 | 50.4% | 7.1% | | 2009 | 0.030 | 0.314 | 0.290 | 0.151 | 0.074 | 0.036 | 0.018 | 0.009 | 0.005 | 0.003 | 0.315 | 0.099 | 43.2% | 8.5% | | 2010 | 0.039 | 0.408 | 0.376 | 0.195 | 0.096 | 0.047 | 0.023 | 0.011 | 0.006 | 0.003 | 0.409 | 0.138 | 33.6% | 10.8% | | 2011 | 0.039 | 0.414 | 0.382 | 0.198 | 0.098 | 0.048 | 0.023 | 0.012 | 0.006 | 0.003 | 0.415 | 0.131 | 33.0% | 11.0% | | 2012 | 0.034 | 0.360 | 0.332 | 0.173 | 0.085 | 0.042 | 0.020 | 0.010 | 0.005 | 0.003 | 0.361 | 0.102 | 38.2% | 9.7% | | 2013 | 0.047 | 0.498 | 0.460 | 0.239 | 0.118 | 0.057 | 0.028 | 0.014 | 0.007 | 0.004 | 0.499 | 0.163 | 26.4% | 13.0% | | 2014 | 0.043 | 0.457 | 0.422 | 0.219 | 0.108 | 0.053 | 0.026 | 0.013 | 0.006 | 0.004 | 0.458 | 0.125 | 29.4% | 12.0% | | 2015 | 0.051 | 0.534 | 0.493 | 0.256 | 0.126 | 0.061 | 0.030 | 0.015 | 0.008 | 0.004 | 0.536 | 0.136 | 24.0% | 13.9% | | 2016 | 0.042 | 0.443 | 0.408 | 0.212 | 0.105 | 0.051 | 0.025 | 0.012 | 0.006 | 0.004 | 0.444 | 0.104 | 30.6% | 11.7% | | 2017 | 0.048 | 0.504 | 0.465 | 0.241 | 0.119 | 0.058 | 0.028 | 0.014 | 0.007 | 0.004 | 0.505 | 0.154 | 26.0% | 13.2% | | 2018 | 0.062 | 0.654 | 0.603 | 0.313 | 0.154 | 0.075 | 0.037 | 0.018 | 0.009 | 0.005 | 0.655 |
0.226 | 17.4% | 16.7% | | 2019 | 0.055 | 0.576 | 0.531 | 0.276 | 0.136 | 0.066 | 0.032 | 0.016 | 0.008 | 0.005 | 0.577 | 0.160 | 21.5% | 14.9% | | 2020 | 0.063 | 0.660 | 0.609 | 0.316 | 0.156 | 0.076 | 0.037 | 0.018 | 0.009 | 0.005 | 0.662 | 0.150 | 17.1% | 16.8% | | 2021 | 0.053 | 0.562 | 0.519 | 0.270 | 0.133 | 0.065 | 0.032 | 0.016 | 0.008 | 0.005 | 0.564 | 0.114 | 22.2% | 14.7% | Table 25: Limit reference point estimates for the Louisiana Red Drum stock. Spawning stock fecundity units are trillions of eggs. Fishing mortality and escapement rate (E) units are per year. | | Management Benchmarks | | |----------------------|---|-------| | Parameters | Derivation | Value | | SPRlimit | GMFMC Amendment 2 | 20.0% | | SSB _{limit} | Equation [24] and SPR _{limit} | 26.8 | | Flimit | Equation [24] and SPR _{limit} | 0.212 | | Elimit | GMFMC Amendment 2 and ACT 889 of the 1988 Regular Legislative Session | 30.0% | Table 26: Sensitivity analysis table of proposed limit reference points. Current estimates are taken as the geometric mean of the 2019-2021 estimates. Yield units are millions of pounds, spawning stock fecundity units are trillions of eggs (with the exception of Model 10 where SSB units are millions of pounds), and fishing mortality and escapement rate units are per year. | Model run | negLL | SPR _{limit} | Yield _{limit} | F_{limit} | E _{limit} | SSB _{limit} | SPR _{current} | SSB _{current} | F _{current} | Ecurrent | F _{current} /F _{limit} | 1/(E _{current} /E _{limit}) | SSB _{current} /SSB _{limit} | |---|---------|----------------------|------------------------|-------------|--------------------|----------------------|------------------------|------------------------|----------------------|----------|--|---|--| | Base Model (h=1) | 12515.0 | 20.0% | 6.11 | 0.212 | 30.0% | 26.8 | 40.1% | 53.7 | 0.140 | 20.1% | 0.661 | 1.49 | 2.00 | | Model 1 (h=0.9) | 12515.5 | 20.0% | 5.62 | 0.212 | 30.0% | 24.6 | 39.9% | 53.1 | 0.141 | 19.9% | 0.668 | 1.51 | 2.16 | | Model 2 (h=0.8) | 12516.1 | 20.0% | 4.91 | 0.211 | 30.0% | 21.5 | 40.0% | 52.6 | 0.142 | 19.7% | 0.674 | 1.52 | 2.45 | | Model 3 (h=0.7) | 12517.0 | 20.0% | 3.76 | 0.211 | 30.0% | 16.4 | 40.1% | 51.9 | 0.144 | 19.3% | 0.684 | 1.55 | 3.16 | | Model 4 (Yield lambdas*10) | 13283.8 | 20.0% | 4.10 | 0.203 | 30.0% | 17.3 | 24.7% | 21.4 | 0.289 | 7.79% | 1.42 | 3.85 | 1.24 | | Model 5 (IOA lambdas*10) | 12262.0 | 20.0% | 6.83 | 0.217 | 30.0% | 30.5 | 51.3% | 78.1 | 0.0861 | 37.6% | 0.397 | 0.799 | 2.56 | | Model 6 (Input ESS/2) | 6305.3 | 20.0% | 5.97 | 0.209 | 30.0% | 25.9 | 37.7% | 48.8 | 0.137 | 24.1% | 0.655 | 1.24 | 1.88 | | Model 7 (Discard M=0.08) | 12577.2 | 20.0% | 6.23 | 0.216 | 30.0% | 28.0 | 43.0% | 60.2 | 0.134 | 20.6% | 0.620 | 1.46 | 2.15 | | Model 8 (Rec. Growth ALK only) | 8415.2 | 20.0% | 6.43 | 0.212 | 30.0% | 29.9 | 51.5% | 76.9 | 0.103 | 24.4% | 0.485 | 1.23 | 2.57 | | Model 9 (LA comm. offshore yield only) | 12449.9 | 20.0% | 6.09 | 0.212 | 30.0% | 26.6 | 39.9% | 53.1 | 0.141 | 20.0% | 0.666 | 1.50 | 1.99 | | Model 10 (SSB) | 12515.0 | 20.0% | 6.14 | 0.217 | 30.0% | 26.9 | 36.3% | 48.9 | 0.140 | 20.1% | 0.645 | 1.49 | 1.82 | | Model 11 (Without NOAA N estimates) | 11959.6 | 20.0% | 4.87 | 0.183 | 30.0% | 18.9 | 13.9% | 13.1 | 0.312 | 9.05% | 1.70 | 3.32 | 0.695 | | Model 12 (Without 1997 NOAA N estimate) | 12198.3 | 20.0% | 6.17 | 0.212 | 30.0% | 27.1 | 41.4% | 56.0 | 0.135 | 21.0% | 0.636 | 1.43 | 2.07 | | Model 13 (Base M up 20%) | 12551.4 | 20.0% | 6.35 | 0.219 | 30.0% | 20.8 | 41.0% | 42.7 | 0.155 | 20.6% | 0.707 | 1.46 | 2.05 | | Model 14 (Base M down 20%) | 12476.1 | 20.0% | 5.91 | 0.198 | 30.0% | 36.3 | 38.3% | 69.5 | 0.121 | 20.0% | 0.614 | 1.50 | 1.92 | Table 27: Sensitivity analysis table of MSY related reference points. Current estimates are taken as the geometric mean of 2019-2021 estimates. Yield units are millions of pounds, spawning stock fecundity units are trillions of eggs, and fishing mortality and escapement rate units are per year. | Model run | negLL | SPRMSY | MSY | F _{MSY} | E _{MSY} | SSB _{MSY} | SPR _{current} | SSB _{current} | Fcurrent | Ecurrent | F _{current} /F _{MSY} | 1/(E _{current} /E _{MSY}) | SSB _{current} /SSB _{MSY} | |------------------|---------|--------|------|------------------|------------------|--------------------|------------------------|------------------------|----------|----------|--|---|--| | Base Model (h=1) | 12515.0 | | | | | | 40.1% | 53.7 | 0.140 | 20.1% | | | | | Model 1 (h=0.9) | 12515.5 | 20.5% | 5.62 | 0.208 | 24.0% | 25.3 | 39.9% | 53.1 | 0.141 | 19.9% | 0.680 | 1.20 | 2.10 | | Model 2 (h=0.8) | 12516.1 | 28.1% | 5.16 | 0.156 | 31.9% | 34.1 | 40.0% | 52.6 | 0.142 | 19.7% | 0.912 | 1.62 | 1.55 | | Model 3 (h=0.7) | 12517.0 | 35.2% | 4.83 | 0.122 | 39.1% | 43.3 | 40.1% | 51.9 | 0.144 | 19.3% | 1.19 | 2.02 | 1.20 | ## 11. Figures Figure 1: Commercial landings of Red Drum in the Gulf of Mexico by state, 1950-2021. Figure 2: Station locations of the LDWF trammel net survey. Yellow lines delineate LDWF Coastal Study Areas and state/federal waters. Figure 3: Sample locations of the LDWF SEAMAP bottom long line survey. White lines delineate state/federal waters and the NOAA Fisheries statistical grids. Figure 4: Length frequencies of Louisiana commercial Red Drum landings (1985-1987). Figure 5: Observed and ASAP base model estimated Red Drum yield (top to bottom: recreational, inshore commercial, offshore commercial, menhaden reduction fishery dead bycatch). Figure 6: Observed and ASAP base model estimated abundance estimates (top to bottom: LDWF trammel net survey, SEAMAP nearshore bottom long-line survey, and NOAA Fisheries mark-recapture estimates). Figure 7: Annual input (open circles) and ASAP estimated (bold lines) recreational Red Drum landings age compositions. Figure 7 (continued): Figure 7 (continued): Figure 8: Annual input (open circles) and ASAP estimated (bold lines) inshore commercial Red Drum landings age compositions. Figure 9: Annual input (open circles) and ASAP estimated (bold lines) offshore commercial Red Drum landings age compositions. Figure 10: Annual input (open circles) and ASAP estimated (bold lines) age compositions of Red Drum catches of the LDWF component of the SEAMAP nearshore bottom long line survey. Figure 11: Annual input (open circles) and ASAP estimated (bold lines) age compositions of Red Drum catches from the MARFIN dataset used to represent the age composition of the NOAA Fisheries mark-recapture estimates. Figure 12: Annual input (open circles) and ASAP estimated (bold lines) age compositions of Red Drum catches from the LDWF marine FI trammel net survey. Figure 12 (continued): Figure 12 (continued): Figure 13: ASAP base model estimated recreational (top), commercial (middle), and survey (bottom) selectivities. Figure 14: ASAP base model age-1 recruitment estimates. Dashed lines represent ±2 asymptotic standard errors. Figure 15: ASAP base model estimated spawning stock fecundity estimates. Dashed lines represent ± 2 asymptotic standard errors. Figure 16: ASAP base model estimated average fishing mortality rates (N-weighted). Dashed lines represent ± 2 asymptotic standard errors. Figure 17: ASAP base model estimated escapement rates. Dashed lines represent ± 2 asymptotic standard errors. Figure 18: ASAP base model estimated age-1 recruits and female spawning stock fecundity. Arrow represents direction of the time-series. The red circle represents the most current data pair (2021 age-1 recruits / 2020 SSF) and the red triangle represents the 2021 SSF estimate. The green circle represents the first data pair (1983 age-1 recruits / 1982 female SSF). Figure 19: Time-series of ASAP base model estimated average fishing mortality rates (N-weighted), escapement rates, spawning stock fecundity, and spawning potential ratio relative to established limit reference points. Current values represent the geometric mean of the 2019-2021 estimates. Figure 20: ASAP base model estimated age-1 recruits and spawning stock fecundity (open circles). Equilibrium recruitment is represented by the bold horizontal. The red circle represents the most current data pair (2021 age-1 recruits / 2020 SSF) and the red triangle represents the 2021 SSF estimate. The green circle represents the first data pair (1983 age-1 recruits / 1982 female SSF). Equilibrium recruitment per spawning stock biomass corresponding with the limit spawning stock fecundity reference point estimate and the minimum and maximum spawning stock fecundity estimates are represented by the slopes of the dashed diagonals (SSB $_{limit}$ =20% SPR; min. SSB=27.4% SPR; max. SSB=58.7% SPR). Figure 21: Retrospective analysis of ASAP base model estimates (top to bottom: average fishing mortality, spawning stock fecundity, age-1 recruits, and age 10+ stock numbers). Figure 22: ASAP base model estimated ratios of annual escapement rates and spawning stock fecundity to limit reference points (E_{limit} and SSF_{limit}). The first and last year of the time-series are identified along with the other years overfishing occurred. The yellow circle represents current status (geometric mean 2019-2021). #### Appendix 1: #### LA Creel/MRIP Calibration Procedure Joe West and Xinan Zhang Office of Fisheries Louisiana Department of Wildlife and Fisheries Updated 10/29/2020 #### Overview The Louisiana Department of Wildlife and Fisheries (LDWF) conducts stock assessments on important recreationally and commercially landed species. Time-series of fishery removals are critical components of these stock assessments as they provide the level of depletion
of the resource through time. Beginning in 2014, LDWF started its own creel survey (LA Creel) to provide recreational landings estimates for Louisiana-specific fishery management and stock assessment purposes. Prior to 2014 recreational landings estimates were taken from the National Marine Fisheries Service's Marine Recreational Intercept Program and the earlier Marine Recreational Fisheries Statistical Survey (MRIP/MRFSS). The MRIP and LA Creel surveys were conducted simultaneously in 2015 for benchmarking purposes. Methods are now needed to calibrate MRIP landings estimates to LA Creel landings estimates for species with upcoming LDWF stock assessments. #### Calibration Methodology A ratio estimator approach is described below allowing hind-casting of LA Creel recreational harvest estimates to 1982. The calibration procedure to hind-cast LA Creel discard estimates is presented in the Appendix of this document. Concurrent harvest rate estimates of LA Creel and MRIP are only available for the single year (2015) both surveys were conducted simultaneously. Effort estimates, however, are available from both surveys for multiple years (2015-2017). The reliability of this calibration procedure could be greatly improved with more comparison years of the surveys. Note: MRIP private fishing effort is distributed across the various fishing modes (shore, inshore, and offshore) by applying the observed distribution of those modes from the dockside survey. In 2016 and 2017, the MRIP effort estimation process required additional estimations, as the dockside portion of that survey was not conducted in Louisiana. NOAA Fisheries applied the proportions of trips by fishing mode observed in 2015 to the effort data collected in 2016 and 2017 to obtain estimates of angler #### Abbreviations used in this document: E - Fishing effort FM - Fishing mode C - charter CI - charter inshore CO - charter offshore P - private PI - private inshore (LA Creel) PO - private offshore PR - private boat (MRIP) SH - shore (MRIP) H - Harvest HR - Harvest rate D - Discards DR - Discard rate PSE - Percent standard error R - Ratio V - Variance y - Year w – Bimonthly period wk – Week of year trips by fishing mode. While this method is clearly not optimal, it does allow comparison of effort over additional years. The LA Creel survey provides estimates for four fishing modes (FM): private inshore (PI), private offshore (PO), charter inshore (CI), and charter offshore (CO). The MRIP survey provides estimates for five fishing modes: private boat (PR), shore (SH), PO, CI, and CO. For calibration purposes, LA Creel estimates are transformed into a fifth fishing mode equivalent to the MRIP surveys SH mode by separating the PI mode into PR and SH modes. Additionally, the inshore/offshore fishing modes of each survey are collapsed into overall private (P) and charter (C) fishing modes for the species included in this report that support predominantly inshore fisheries. Fishing effort (E) estimates of the two surveys are calibrated separately by collapsed fishing mode (P and SH only) and bimonthly period (w). Because the charter fishing effort frame used by the LA Creel and MRIP surveys are functionally equivalent, charter fishing effort and corresponding variance estimates of the two surveys are assumed equivalent and not adjusted. Harvest rates and corresponding variance estimates of the MRIP and LA Creel surveys for the species included in this report are also assumed equivalent and not adjusted. Calibrated effort estimates of the shore and private fishing modes are then combined with unadjusted MRIP harvest rate estimates to provide time-series of recreational harvest estimates for species with upcoming LDWF stock assessments as described below. #### Fishing Effort To allow hind-casting of LA Creel effort estimates to the historic MRIP effort time-series, fishing effort calibration factors are calculated as the ratio of mean fishing effort (2015-2017) from each survey by fishing mode (P and SH only) and bimonthly period as: $$\widehat{R}_{E,FM,w} = \frac{\bar{E}_{LAcreel,FM,w}}{\bar{E}_{MRIP,FM,w}}$$ [1] Note: MRIP effort estimates in Equation [1] are based on the FES and APAIS methodologies. Survey-specific mean fishing effort (angler trips) and calibration factors for the P and SH fishing modes by bimonthly period are presented below. | FM | W | $ar{E}_{LAcreel}$ | \bar{E}_{MRIP} | \widehat{R}_E | |----|---|-------------------|------------------|-----------------| | P | 1 | 141,988 | 760,757 | 0.187 | | P | 2 | 229,436 | 608,036 | 0.377 | | P | 3 | 425,433 | 908,285 | 0.468 | | P | 4 | 349,345 | 1,075,253 | 0.325 | | P | 5 | 284,077 | 935,917 | 0.304 | | P | 6 | 277,228 | 806,998 | 0.344 | | SH | 1 | 50,377 | 753,943 | 0.067 | | SH | 2 | 80,580 | 642,766 | 0.125 | | SH | 3 | 151,142 | 897,938 | 0.168 | | SH | 4 | 73,203 | 1,095,251 | 0.067 | | SH | 5 | 105,286 | 1,228,032 | 0.086 | | SH | 6 | 64,342 | 950,532 | 0.068 | The hind-cast LA Creel fishing effort estimates (1982-2013) are then calculated by fishing mode and bimonthly period as: $$\hat{E}_{\gamma,w,FM,\hat{R}} = \hat{R}_{E,FM,w} \hat{E}_{\gamma,w,FM,MRIP} \quad [2]$$ Note: MRIP effort estimates in Equation [2] have been calibrated to the FES and APAIS design changes (FCAL). Variances of the hind-cast LA Creel fishing effort estimates from Equation [2] are approximated by fishing mode and bimonthly period as: $$\hat{V}(\hat{E}_{y,w,FM,\hat{R}}) = \hat{E}_{y,w,FM,MRIP}^2 \hat{V}(\hat{R}_{E,FM,w}) + \hat{R}_{E,FM,w}^2 \hat{V}(\hat{E}_{y,w,FM,MRIP}) - \hat{V}(\hat{R}_{E,FM,w}) \hat{V}(\hat{E}_{y,w,FM,MRIP})$$ [3] where $$\hat{V}\left(\hat{R}_{E,FM,w}\right) = \hat{R}_{E,FM,w}^{2} \left[\frac{\hat{V}(\bar{E}_{LAcreel,FM,w})}{\bar{E}_{LAcreel,FM,w}^{2}} + \frac{\hat{V}(\bar{E}_{MRIP,FM,w})}{\bar{E}_{MRIP,FM,w}^{2}} \right]$$ Harvest The hind-cast LA Creel harvest estimates (1982-2013) by fishing mode (P and SH only) for the species included in this report are then calculated as: $$\widehat{H}_{y,FM,\widehat{R}} = \sum_{w} \widehat{E}_{y,w,FM,\widehat{R}} \widehat{HR}_{y,w,FM,MRIP}$$ [4] Note: MRIP harvest rate estimates in Equation [4] are FCAL estimates and represent A+ B1 landings only. Variances of the calibrated harvest estimates are then calculated as: $$\widehat{V}(\widehat{H}_{y,FM,\widehat{R}}) = \sum_{w} \left[\widehat{E}_{y,FM,w,\widehat{R}}^{2} \widehat{V}(\widehat{HR}_{y,FM,w,MRIP}) + \widehat{HR}_{y,FM,w,MRIP}^{2} \widehat{V}(\widehat{E}_{y,FM,w,\widehat{R}}) - \widehat{V}(\widehat{E}_{y,FM,w,\widehat{R}}) \widehat{V}(\widehat{HR}_{y,FM,w,MRIP}) \right]$$ [5] Percent standard errors of the calibrated harvest estimates are then calculated as: $$PSE(\widehat{H}_{y,FM,\widehat{R}}) = 100 \times \frac{\sqrt{\widehat{V}(\widehat{H}_{y,FM,\widehat{R}})}}{\widehat{H}_{y,FM,\widehat{R}}} \quad [6]$$ The MRIP (FCAL) and hind-cast LA Creel harvest estimate time-series and corresponding PSEs by fishing mode for species with upcoming LDWF stock assessments are presented below. FM = Private | 1.111 - 1 | | Black I | Orum | | | Red I | Drum | | | Sheeps | head | | Sou | thern 1 | Flounder | | S | otted S | Seatrout | | |-----------|-----------|---------|---------|------|-----------|-------|-----------|------|-----------|--------|---------|------|-----------|---------|----------|------|------------|---------|-----------|------| | | MRIP |) | LA Cr | eel | MRIP |) | LA Cre | el | MRIP | | LA Cr | eel | MRIP |) | LA Cr | eel | MRIP | | LA Cre | el | | Year | Harvest | PSE | 1982 | 1,106,821 | 27.1 | 422,174 | 33.0 | 3,046,664 | 12.0 | 921,357 | 20.0 | 511,387 | 34.3 | 188,413 | 39.4 | 497,263 | 19.5 | 190,627 | 25.9 | 9,160,786 | 16.2 | 3,146,198 | 22.6 | | 1983 | 1,659,509 | 34.3 | 610,662 | 39.0 | 4,758,470 | 32.7 | 1,605,600 | 40.4 | 1,064,824 | 38.1 | 346,803 | 43.1 | 1,929,817 | 51.4 | 594,965 | 59.9 | 7,402,179 | 20.0 | 2,710,035 | 27.4 | | 1984 | 362,104 | 26.0 | 137,134 | 32.9 | 2,976,458 | 38.9 | 983,477 | 41.9 | 548,364 | 47.5 | 174,784 | 39.8 | 213,064 | 23.0 | 72,613 | 29.7 | 2,503,426 | 29.8 | 807,030 | 34.7 | | 1985 | 356,406 | 30.0 | 111,625 | 33.3 | 2,563,074 | 14.5 | 859,464 | 20.3 | 340,142 | 32.1 | 117,102 | 34.8 | 431,284 | 24.5 | 153,297 | 29.0 | 5,947,072 | 15.2 | 2,157,908 | 23.9 | | 1986 | 918,541 | 24.1 | 310,194 | 28.1 | 2,635,843 | 10.0 | 855,348 | 17.9 | 252,644 | 15.5 | 85,391 | 21.7 | 1,464,132 | 48.5 | 500,797 | 49.1 | 14,077,720 | 7.8 | 5,037,007 | 16.1 | | 1987 | 683,049 | 25.6 | 227,818 | 31.7 | 2,602,974 | 23.0 | 885,506 | 29.4 | 270,702 | 33.7 | 86,011 | 33.5 | 147,601 | 25.2 | 51,262 | 28.5 | 11,023,715 | 10.1 | 4,044,859 | 17.9 | | 1988 | 344,681 | 15.4 | 117,966 | 20.7 | 1,160,955 | 20.2 | 351,623 | 22.6 | 277,793 | 21.3 | 92,972 | 25.8 | 358,099 | 13.2 | 123,938 | 18.5 | 6,890,452 | 14.3 | 2,445,984 | 20.4 | | 1989 | 227,336 | 20.4 | 76,687 | 24.4 | 2,015,801 | 12.6 | 687,964 | 21.3 | 789,892 | 49.3 | 250,017 | 49.1 | 341,489 | 25.9 | 109,591 | 28.7 | 8,082,318 | 11.9 | 2,714,014 | 17.3 | | 1990 | 231,168 | 22.9 | 80,781 | 26.4 | 1,469,547 | 16.8 | 477,778 | 22.0 | 270,726 | 27.1 | 102,078 | 30.5 | 805,964 | 23.6 | 271,576 | 27.4 | 4,881,711 | 13.7 | 1,677,370 | 19.8 | | 1991 | 183,005 | 19.4 | 62,124 | 24.1 | 1,824,768 | 20.0 | 597,343 | 28.0 | 402,935 | 32.6 | 141,868 | 35.1 | 694,466 | 16.1 | 242,476 | 20.3 | 13,468,560 | 9.9 | 4,784,368 | 16.8 | | 1992 | 333,217 | 23.9 | 116,216 | 27.5 | 2,807,145 | 8.7 | 926,924 | 15.4 | 563,816 | 25.3 | 178,285 | 27.1 | 615,928 | 14.6 | 218,119 | 18.7 | 10,680,755 | 9.3 | 3,608,794 | 16.9 | | 1993 | 246,588 | 17.6 | 89,348 | 23.4 | 2,581,130 | 9.9 | 868,002 | 16.6 | 885,380 | 26.7 | 306,149 | 33.0 | 500,023 | 14.8 | 172,917 | 19.0 | 7,757,436 | 12.1 | 2,638,017 | 18.0 | | 1994 | 234,272 | 16.9 | 80,413 | 23.5 | 2,311,786 | 9.5 | 770,586 | 15.8 | 508,883 | 17.8 | 172,554 | 23.1 | 578,264 | 21.0 | 211,204 | 25.3 | 10,418,883 | 10.5 | 3,491,233 | 17.0 | | 1995 | 335,507 | 18.4 | 109,171 | 21.7 | 3,842,177 | 8.7 |
1,281,488 | 17.2 | 920,809 | 20.4 | 272,993 | 23.5 | 398,528 | 14.0 | 144,829 | 21.1 | 12,135,672 | 13.2 | 4,042,945 | 22.9 | | 1996 | 414,798 | 12.9 | 136,121 | 18.6 | 3,197,497 | 9.0 | 1,088,408 | 15.6 | 760,607 | 21.7 | 248,066 | 27.2 | 416,737 | 11.4 | 147,144 | 16.9 | 10,306,475 | 11.3 | 3,538,044 | 17.9 | | 1997 | 477,705 | 16.1 | 156,723 | 19.9 | 2,861,918 | 9.6 | 982,355 | 16.2 | 1,005,406 | 18.2 | 308,997 | 20.7 | 445,579 | 11.7 | 157,583 | 17.8 | 10,415,118 | 11.9 | 3,628,093 | 17.9 | | 1998 | 920,933 | 14.6 | 306,943 | 20.2 | 2,762,600 | 8.0 | 943,728 | 15.0 | 1,138,280 | 15.6 | 360,910 | 21.7 | 393,018 | 13.8 | 147,920 | 19.9 | 10,005,379 | 8.7 | 3,642,009 | 17.6 | | 1999 | 681,905 | 11.9 | 233,143 | 17.5 | 3,459,681 | 6.9 | 1,193,797 | 14.2 | 793,093 | 16.2 | 245,601 | 22.1 | 758,946 | 10.4 | 266,165 | 16.0 | 14,037,235 | 8.5 | 4,711,633 | 15.7 | | 2000 | 1,017,717 | 12.8 | 346,026 | 17.7 | 4,249,272 | 6.9 | 1,462,416 | 14.3 | 769,653 | 28.0 | 250,138 | 32.0 | 670,295 | 13.3 | 239,347 | 18.6 | 15,977,551 | 7.7 | 5,316,672 | 16.1 | | 2001 | 765,815 | 13.7 | 255,378 | 18.9 | 4,322,843 | 7.7 | 1,429,691 | 14.1 | 567,945 | 15.8 | 193,752 | 20.5 | 427,914 | 12.2 | 156,040 | 18.3 | 12,618,114 | 8.0 | 4,299,637 | 14.9 | | 2002 | 908,616 | 12.6 | 311,241 | 18.7 | 3,445,574 | 8.2 | 1,156,118 | 14.6 | 1,249,437 | 18.7 | 412,469 | 26.6 | 443,758 | 18.8 | 172,816 | 26.5 | 9,816,916 | 10.3 | 3,471,004 | 16.7 | | 2003 | 659,209 | 14.7 | 223,268 | 20.0 | 2,977,090 | 7.4 | 1,006,043 | 14.9 | 1,257,175 | 23.2 | 386,996 | 26.1 | 647,034 | 15.7 | 247,872 | 22.9 | 10,528,223 | 9.6 | 3,722,763 | 17.5 | | 2004 | 546,776 | 12.0 | 180,874 | 17.0 | 2,605,118 | 8.1 | 887,098 | 14.8 | 1,722,589 | 24.9 | 554,019 | 30.5 | 408,006 | 12.6 | 149,051 | 18.1 | 9,728,915 | 10.5 | 3,369,942 | 17.4 | | 2005 | 461,775 | 13.0 | 155,544 | 18.9 | 2,236,920 | 9.4 | 769,288 | 15.5 | 962,130 | 23.6 | 301,610 | 26.7 | 286,521 | 12.9 | 107,932 | 19.5 | 10,699,116 | 8.5 | 3,636,945 | 15.9 | | 2006 | 354,910 | 14.3 | 114,788 | 18.6 | 2,385,907 | 10.7 | 805,677 | 15.9 | 430,504 | 25.3 | 121,203 | 28.8 | 285,429 | 11.9 | 96,047 | 16.6 | 13,779,620 | 8.7 | 5,041,323 | 16.9 | | 2007 | 415,104 | 15.7 | 140,658 | 18.9 | 3,049,990 | 8.3 | 1,033,903 | 14.7 | 320,952 | 21.9 | 94,883 | 22.0 | 355,606 | 19.0 | 125,321 | 23.1 | 11,790,003 | 8.3 | 3,996,827 | 15.8 | | 2008 | 668,820 | 12.8 | 223,760 | 19.0 | 3,336,041 | 7.9 | 1,138,176 | 14.5 | 623,988 | 17.6 | 205,956 | 24.0 | 239,893 | 10.9 | 85,657 | 16.7 | 15,551,638 | 9.5 | 5,406,002 | 17.2 | | 2009 | 908,297 | 13.6 | 306,083 | 18.4 | 3,414,547 | 8.2 | 1,181,030 | 15.3 | 1,055,358 | 22.6 | 294,230 | 26.8 | 398,573 | 14.6 | 138,485 | 19.0 | 15,667,348 | 8.8 | 5,486,627 | 16.4 | | 2010 | 697,188 | 14.5 | 231,978 | 18.5 | 5,128,842 | 8.0 | 1,770,689 | 14.5 | 753,414 | 22.4 | 253,947 | 26.8 | 571,870 | 14.4 | 214,835 | 20.6 | 14,465,717 | 10.7 | 5,109,130 | 20.0 | | 2011 | 679,614 | 15.1 | 229,698 | 19.5 | 4,548,266 | 8.3 | 1,572,134 | 15.1 | 1,425,042 | 35.5 | 484,582 | 42.3 | 544,173 | 14.7 | 199,173 | 19.5 | 17,697,003 | 9.6 | 6,056,375 | 16.8 | | 2012 | 694,257 | 12.8 | 239,881 | 19.1 | 3,458,029 | 8.8 | 1,205,064 | 16.3 | 577,843 | 16.7 | 173,799 | 20.6 | 524,259 | 14.8 | 186,030 | 19.6 | 17,938,248 | 8.9 | 6,291,503 | 18.2 | | 2013 | 528,084 | 14.3 | 170,664 | 20.1 | 4,523,043 | 8.7 | 1,495,702 | 15.3 | 311,155 | 16.9 | 93,968 | 20.4 | 930,394 | 13.1 | 323,565 | 21.0 | 12,928,606 | 9.4 | 4,379,022 | 16.6 | FM = Shore | | | Black | Drum | | | Red D | rum | | | Sheeps | head | | So | uthern | Flounder | | Sı | otted S | eatrout | | |------|---------|-------|---------|------|-----------|-------|---------|------|-----------|--------|---------|------|---------|--------|----------|------|-----------|---------|---------|------| | | MRII | P | LA Cre | eel | MRIP | | LA Cr | eel | MRIP | 1 | LA Cr | eel | MRI | 2 | LA Cr | eel | MRIP |) | LA Cr | eel | | Year | Harvest | PSE | 1982 | 880,444 | 22.8 | 105,131 | 42.4 | 2,388,907 | 23.1 | 274,159 | 38.6 | 676,628 | 29.0 | 62,101 | 32.8 | 834,940 | 21.4 | 95,797 | 40.1 | 2,787,818 | 23.5 | 281,415 | 36.0 | | 1983 | 500,922 | 29.9 | 58,639 | 38.2 | 1,351,640 | 25.0 | 115,437 | 35.1 | 2,326,172 | 25.9 | 262,151 | 40.7 | 327,205 | 34.7 | 28,920 | 38.1 | 2,927,094 | 47.2 | 245,487 | 47.3 | | 1984 | 536,866 | 34.1 | 47,392 | 47.4 | 660,866 | 35.0 | 54,017 | 35.4 | 987,229 | 41.9 | 80,659 | 41.6 | 112,657 | 45.9 | 9,158 | 48.8 | 331,308 | 40.5 | 29,935 | 42.2 | | 1985 | 181,986 | 27.0 | 15,182 | 33.5 | 618,693 | 30.8 | 44,043 | 36.4 | 656,976 | 30.2 | 48,274 | 39.6 | 284,046 | 29.1 | 21,773 | 35.3 | 500,629 | 27.9 | 40,577 | 34.6 | | 1986 | 469,638 | 52.0 | 36,857 | 49.3 | 243,647 | 45.9 | 17,936 | 49.4 | 782,112 | 81.2 | 54,471 | 79.8 | 189,325 | 42.5 | 16,675 | 48.5 | 1,815,727 | 55.4 | 135,153 | 52.9 | | 1987 | 260,971 | 52.0 | 24,154 | 52.0 | 665,407 | 54.3 | 47,110 | 56.1 | 65,880 | 46.2 | 4,511 | 55.2 | 185,090 | 37.3 | 13,993 | 39.7 | 965,130 | 44.3 | 107,313 | 59.3 | | 1988 | 429,974 | 36.6 | 44,760 | 47.2 | 237,418 | 45.6 | 16,866 | 48.4 | 662,260 | 57.5 | 53,517 | 54.6 | 90,283 | 40.5 | 7,779 | 40.9 | 398,803 | 39.6 | 39,377 | 48.7 | | 1989 | 484,955 | 58.2 | 43,202 | 67.8 | 472,062 | 35.4 | 42,270 | 44.0 | 179,471 | 40.2 | 15,201 | 44.3 | 127,388 | 33.6 | 11,241 | 39.5 | 402,794 | 68.4 | 28,735 | 67.9 | | 1990 | 122,352 | 47.4 | 15,053 | 64.0 | 627,617 | 29.6 | 51,503 | 40.2 | 80,673 | 46.7 | 7,133 | 53.2 | 238,834 | 24.9 | 20,903 | 33.4 | 1,178,966 | 28.6 | 114,639 | 44.3 | | 1991 | 80,287 | 38.8 | 7,218 | 45.5 | 497,827 | 35.7 | 36,833 | 41.6 | 109,726 | 43.1 | 7,730 | 46.2 | 617,776 | 26.6 | 64,608 | 38.5 | 1,611,329 | 29.8 | 181,444 | 48.6 | | 1992 | 266,722 | 39.0 | 22,670 | 43.9 | 535,731 | 21.7 | 54,124 | 31.7 | 1,470,811 | 61.9 | 102,204 | 66.6 | 197,948 | 31.2 | 16,495 | 33.6 | 1,622,752 | 18.8 | 151,030 | 26.5 | | 1993 | 332,409 | 38.4 | 30,470 | 47.2 | 1,058,829 | 26.2 | 95,426 | 32.6 | 438,233 | 37.3 | 32,297 | 40.7 | 152,286 | 34.8 | 14,130 | 36.6 | 1,262,891 | 19.3 | 133,129 | 31.7 | | 1994 | 111,090 | 26.4 | 11,042 | 37.0 | 973,065 | 30.5 | 79,607 | 36.6 | 339,821 | 55.8 | 25,980 | 51.8 | 245,182 | 26.2 | 24,551 | 30.8 | 2,585,733 | 32.7 | 212,925 | 35.3 | | 1995 | 122,762 | 40.4 | 10,232 | 37.8 | 747,219 | 23.9 | 57,820 | 33.9 | 338,135 | 43.2 | 31,308 | 40.9 | 56,558 | 30.7 | 5,633 | 40.1 | 1,432,447 | 21.4 | 134,570 | 30.5 | | 1996 | 529,054 | 58.3 | 39,338 | 55.7 | 864,227 | 22.6 | 79,139 | 28.0 | 682,583 | 41.1 | 50,882 | 43.8 | 134,402 | 31.1 | 13,588 | 42.7 | 2,327,551 | 27.4 | 260,453 | 42.7 | | 1997 | 123,564 | 39.8 | 13,754 | 56.7 | 347,632 | 21.5 | 31,628 | 29.5 | 283,171 | 25.4 | 26,246 | 33.0 | 307,330 | 23.1 | 29,895 | 35.4 | 1,905,584 | 21.5 | 186,083 | 32.5 | | 1998 | 86,575 | 34.3 | 11,317 | 53.9 | 397,083 | 31.2 | 36,709 | 34.9 | 450,254 | 36.2 | 32,677 | 41.5 | 128,645 | 26.4 | 14,741 | 40.5 | 2,415,887 | 30.1 | 303,726 | 52.7 | | 1999 | 385,329 | 39.6 | 31,947 | 45.0 | 492,350 | 25.7 | 54,909 | 38.8 | 202,445 | 35.8 | 16,600 | 36.7 | 641,276 | 32.9 | 54,674 | 38.0 | 3,530,688 | 27.9 | 288,942 | 35.4 | | 2000 | 625,217 | 26.3 | 51,753 | 31.9 | 822,698 | 21.3 | 69,669 | 26.6 | 202,744 | 52.7 | 17,790 | 51.6 | 136,953 | 43.0 | 12,753 | 44.5 | 2,697,901 | 36.0 | 222,046 | 40.3 | | 2001 | 675,474 | 30.1 | 69,123 | 38.6 | 621,324 | 23.2 | 53,291 | 31.1 | 399,908 | 49.4 | 43,424 | 54.5 | 305,296 | 67.4 | 37,260 | 72.2 | 2,657,545 | 28.5 | 269,017 | 35.7 | | 2002 | 399,178 | 23.6 | 36,575 | 30.2 | 945,520 | 31.8 | 80,339 | 37.4 | 872,663 | 35.4 | 72,526 | 43.6 | 323,826 | 31.2 | 33,693 | 40.6 | 923,988 | 31.5 | 99,269 | 39.8 | | 2003 | 288,546 | 23.4 | 27,192 | 30.4 | 280,366 | 33.2 | 24,715 | 34.7 | 983,844 | 36.8 | 102,183 | 38.4 | 199,400 | 38.3 | 16,524 | 38.0 | 945,730 | 42.3 | 67,249 | 45.2 | | 2004 | 137,240 | 36.0 | 12,726 | 38.9 | 559,991 | 19.0 | 50,246 | 28.0 | 603,693 | 36.9 | 46,089 | 43.2 | 395,552 | 36.1 | 38,056 | 47.6 | 1,303,971 | 45.1 | 178,356 | 62.5 | | 2005 | 138,758 | 28.0 | 12,505 | 38.3 | 704,981 | 30.9 | 53,900 | 41.0 | 563,322 | 29.6 | 48,230 | 38.5 | 450,207 | 38.7 | 33,234 | 52.7 | 632,798 | 30.7 | 51,805 | 37.7 | | 2006 | 261,544 | 30.8 | 23,555 | 40.8 | 389,280 | 25.4 | 32,980 | 36.4 | 593,305 | 31.2 | 42,006 | 38.8 | 335,766 | 29.1 | 32,038 | 32.6 | 788,193 | 22.7 | 71,014 | 31.4 | | 2007 | 286,213 | 35.5 | 26,082 | 38.6 | 187,726 | 25.1 | 16,635 | 36.1 | 257,091 | 36.2 | 25,721 | 43.8 | 348,752 | 28.0 | 36,807 | 37.0 | 771,812 | 27.5 | 79,384 | 35.9 | | 2008 | 247,234 | 25.5 | 20,967 | 34.3 | 374,463 | 27.9 | 28,401 | 32.9 | 1,396,084 | 30.3 | 106,247 | 36.9 | 260,865 | 36.4 | 22,101 | 34.7 | 1,140,758 | 33.3 | 125,464 | 47.3 | | 2009 | 100,842 | 26.9 | 9,449 | 34.4 | 123,122 | 28.0 | 11,253 | 34.3 | 523,105 | 46.9 | 57,138 | 57.2 | 470,681 | 44.6 | 37,214 | 45.7 | 611,298 | 25.2 | 58,398 | 33.3 | | 2010 | 184,668 | 41.2 | 15,662 | 42.7 | 531,708 | 32.4 | 47,942 | 35.0 | 561,648 | 40.1 | 42,755 | 40.8 | 94,348 | 29.4 | 8,368 | 33.9 | 584,064 | 43.3 | 42,629 | 45.1 | | 2011 | 380,669 | 21.7 | 34,092 | 28.5 | 983,461 | 22.1 | 91,170 | 28.1 | 1,318,064 | 44.8 | 114,952 | 55.5 | 430,717 | 40.0 | 37,441 | 40.4 | 651,281 | 27.8 | 64,311 | 37.5 | | 2012 | 283,508 | 22.6 | 24,574 | 32.7 | 279,299 | 36.1 | 21,571 | 40.0 | 695,553 | 42.6 | 50,298 | 45.6 | 155,170 | 30.6 | 14,154 | 34.0 | 727,577 | 29.5 | 76,733 | 39.3 | | 2013 | 471,823 | 13.0 | 34,758 | 29.7 | 849,762 | 9.3 | 74,732 | 28.1 | 659,450 | 12.4 | 45,522 | 36.7 | 573,922 | 18.3 | 47,486 | 33.0 | 2,682,372 | 11.4 | 228,143 | 24.3 | #### **Appendix** A ratio estimator approach is described below allowing hind-casting of LA Creel recreational discard estimates to 1982. Concurrent discard estimates of the LA Creel and MRIP surveys are not available. Analogous to the procedure to hind-cast LA Creel harvest estimates, the hind-cast LA Creel effort estimates of the shore and private fishing modes are combined with unadjusted MRIP discard rate
estimates to provide time-series of recreational discard estimates for species with upcoming LDWF stock assessments as described below. Discard estimates of the charter fishing mode for the LA Creel and MRIP surveys are assumed equivalent and not adjusted. Discards (1982-2013) The hind-cast LA Creel discard estimates (1982-2013) are calculated by collapsed fishing mode (P and SH only) and bimonthly period as: $$\widehat{D}_{y,FM,\widehat{R}} = \sum_{w} \widehat{E}_{y,w,FM,\widehat{R}} \ \widehat{DR}_{y,w,FM,MRIP} \quad [1a]$$ Note: MRIP discard rate estimates in Equation [1a] are FCAL estimates and represent B2 landings only. The calibrated effort estimates are taken from Equation [2]. Variances of the calibrated discard estimates from Equation [1a] are then calculated as: $$\widehat{V}(\widehat{D}_{y,FM,\hat{R}}) = \sum_{w} \left[\widehat{E}_{y,FM,w,\hat{R}}^{2} \widehat{V}(\widehat{DR}_{y,FM,w,MRIP}) + \widehat{DR}_{y,FM,w,MRIP}^{2} \widehat{V}(\widehat{E}_{y,FM,w,\hat{R}}) - \widehat{V}(\widehat{E}_{y,FM,w,\hat{R}}) \widehat{V}(\widehat{DR}_{y,FM,w,MRIP}) \right]$$ [2a] Percent standard errors of the calibrated discard estimates are then calculated as: $$PSE(\widehat{D}_{y,FM,\widehat{R}}) = 100 \times \frac{\sqrt{\widehat{v}(\widehat{D}_{y,FM,\widehat{R}})}}{\widehat{D}_{y,FM,\widehat{R}}} \quad [3a]$$ Discards (2014-2016) Discard estimates of the LA Creel survey are only available from week 19 of 2016 to present. Discard estimates prior to week 19 of 2016 are imputed by fishing mode (P, SH, and C) and week of year (wk) by calculating discard to harvest ratios from the LA Creel estimates from week 19 of 2016 to week 18 of 2017 as: $$\hat{R}_{D/H,FM,wk} = \frac{\hat{D}_{LAcreel,FM,wk}}{\hat{H}_{LAcreel,FM,wk}} \quad [4a]$$ The imputed LA Creel discard estimates are then calculated by fishing mode from week 1 of 2014 to week 18 of 2016 as: $$\widehat{D}_{y,wk,FM,\widehat{R}_{D/H}} = \widehat{R}_{D/H,FM,wk} \widehat{H}_{y,wk,FM,LAcreel}$$ [5a] Variances of the imputed LA Creel discard estimates from Equation [5a] are approximated by fishing mode and week of year as: $$\hat{V}\left(\hat{D}_{y,wk,FM,\hat{R}_{D/H}}\right) = \hat{H}_{y,wk,FM,LAcreel}^2 \hat{V}\left(\hat{R}_{D/H,FM,wk}\right) + \hat{R}_{D/H,FM,wk}^2 \hat{V}\left(\hat{H}_{y,wk,FM,LAcreel}\right) - \hat{V}\left(\hat{R}_{D/H,FM,wk}\right) \hat{V}\left(\hat{H}_{y,wk,FM,LAcreel}\right)$$ [6a] where $$\hat{V}\left(\hat{R}_{D/H,FM,wk}\right) = \hat{R}_{D/H,FM,wk}^{2} \left[\frac{\hat{V}(\hat{D}_{LAcreel,FM,wk})}{\hat{D}_{LAcreel,FM,wk}^{2}} + \frac{\hat{V}(\hat{H}_{LAcreel,FM,wk})}{\hat{H}_{LAcreel,FM,wk}^{2}} \right]$$ The MRIP (FCAL) and hind-cast/imputed LA Creel discard estimate annual time-series and corresponding PSEs by fishing mode for species with upcoming LDWF stock assessments are presented below. | FM = 1 | M = Private |-----------|------------------------|--------------|--------------------|--------------|------------------------|------------|---------------------------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|---------------------------------------|------------------|--------------|-------------------------|-------------|------------------------|--------------| | | | Black I |)rum | | | Red I | Drum | | | Sheep | shead | | | | Flounder | | | | Seatrout | | | | MRIP | | LA Cre | eel | MRIF |) | LA Cre | el | MRII |) | LA Cre | eel | MRIE | · · · · · · · · · · · · · · · · · · · | LA Cr | eel | MRIP |) | LA Cre | eel | | Year | Discards | PSE | 1982 | 818,734 | 54.5 | 342,393 | 62.2 | 274,870 | 40.0 | 98,227 | 42.3 | 515,459 | 44.8 | 204,110 | 48.5 | 1,083,668 | 45.5 | 421,148 | 51.2 | 1,654,868 | 35.7 | 594,062 | 39.0 | | 1983 | 671,251 | 47.1 | 221,158 | 50.2 | 793,805 | 34.3 | 276,867 | 39.3 | 833,079 | 71.7 | 283,429 | 76.2 | 145,644 | 54.4 | 50,016 | 55.2 | 2,092,864 | 42.4 | 785,069 | 46.9 | | 1984 | 284,254 | 68.2 | 95,815 | 67.1 | 346,317 | 56.3 | 115,622 | 57.6 | 309,986 | 35.6 | 95,232 | 44.2 | 65,411 | 64.9 | 20,866 | 65.9 | 197,040 | 21.8 | 65,344 | 29.3 | | 1985 | 291,106 | 38.5 | 96,316 | 41.4 | 243,413 | 40.1 | 94,362 | 47.4 | 317,951 | 28.8 | 111,945 | 33.6 | 61,785 | 68.0 | 21,053 | 66.7 | 1,709,137 | 23.1 | 602,297 | 28.0 | | 1986 | 448,236 | 20.4 | 147,784 | 25.7 | 451,777 | 15.3 | 165,090 | 21.0 | 393,569 | 19.8 | 127,576 | 25.2 | 367,830 | 40.1 | 163,383 | 47.5 | 4,745,760 | 10.2 | 1,657,453 | 17.8 | | 1987 | 300,153 | 41.9 | 93,818 | 46.4 | 2,360,122 | 24.5 | 767,630 | 32.3 | 210,127 | 21.2 | 72,374 | 25.9 | 10,809 | 42.4 | 4,030 | 45.8 | 6,980,249 | 12.7 | 2,392,248 | 20.4 | | 1988 | 350,541 | 21.1 | 121,213 | 26.8 | 3,062,822 | 16.2 | 1,010,477 | 21.1 | 398,058 | 25.6 | 130,073 | 30.3 | 375,399 | 58.9 | 118,042 | 59.6 | 5,610,284 | 10.4 | 2,046,380 | 17.6 | | 1989 | 228,012 | 35.0 | 73,311 | 38.8 | 2,998,273 | 20.9 | 1,009,167 | 28.0 | 483,464 | 37.6 | 167,906 | 42.3 | 260,401 | 93.8 | 81,599 | 91.0 | 5,656,036 | 14.2 | 1,867,058 | 19.1 | | 1990 | 653,511 | 28.7 | 222,412 | 33.7 | 1,880,922 | 19.7 | 577,599 | 22.7 | 408,363 | 25.1 | 142,262 | 28.8 | 334,821 | 40.3 | 110,310 | 41.6 | 4,750,794 | 18.0 | 1,592,531 | 22.9 | | 1991 | 389,398 | 26.0 | 131,179 | 29.7 | 7,412,013 | 11.2 | 2,496,220 | 22.1 | 272,267 | 26.1 | 102,330 | 29.6 | 114,636 | 37.5 | 33,497 | 32.0 | 12,341,402 | 9.3 | 4,362,600 | 16.5 | | 1992 | 559,417 | 33.2 | 180,394 | 37.5 | 5,753,237 | 9.1 | 1,822,782 | 15.9 | 440,289 | 16.8 | 139,865 | 21.4 | 42,988 | 21.4 | 14,639 | 24.4 | 8,795,484 | 8.4 | 2,990,434 | 15.1 | | 1993 | 710,873 | 18.2 | 238,220 | 22.8 | 4,143,002 | 11.2 | 1,376,592 | 17.8 | 758,778 | 20.8 | 258,952 | 26.3 | 45,686 | 33.2 | 16,433 | 36.2 | 6,905,906 | 11.3 | 2,273,152 | 17.2 | | 1994 | 440,825 | 29.8 | 142,921 | 32.2 | 4,086,816 | 12.5 | 1,285,719 | 18.2 | 608,190 | 19.3 | 203,610 | 24.0 | 34,050 | 29.6 | 11,784 | 31.8 | 7,780,829 | 9.7 | 2,535,516 | 16.2 | | 1995 | 816,070 | 17.5 | 287,267 | 22.7 | 4,248,542 | 15.4 | 1,351,245 | 19.8 | 558,424 | 25.6 | 182,168 | 30.3 | 59,357 | 34.4 | 21,519 | 34.0 | 7,603,172 | 11.0 | 2,500,637 | 19.7 | | 1996 | 525,560 | 20.4 | 179,994 | 25.3 | 3,312,106 | 11.9 | 1,042,253 | 16.2 | 878,282 | 23.1 | 281,778 | 28.4 | 80,897 | 23.0 | 27,331 | 27.1 | 8,055,743 | 10.2 | 2,831,212 | 16.9 | | 1997 | 1,057,203 | 18.5 | 362,214 | 24.4 | 5,150,476 | 11.3 | 1,635,185 | 17.7 | 1,138,193 | 23.4 | 399,291 | 30.0 | 98,494 | 29.1 | 34,023 | 32.0 | 10,917,063 | 19.7 | 3,786,705 | 24.2 | | 1998 | 1,439,547 | 24.7 | 481,648 | 27.7 | 5,753,271 | 10.8 | 1,828,452 | 16.4 | 1,056,926 | 17.9 | 345,562 | 24.6 | 99,007 | 29.1 | 32,671 | 32.2 | 9,977,400 | 9.3 | 3,575,231 | 16.7 | | 1999 | 820,371 | 13.6 | 271,531 | 18.2 | 5,477,613 | 9.4 | 1,861,757 | 16.1 | 699,825 | 18.9 | 220,631 | 25.4 | 84,447 | 20.8 | 28,690 | 25.4 | 11,688,515 | 8.8 | 3,908,262 | 15.9 | | 2000 | 1,833,450 | 16.2 | 626,732 | 20.2
22.3 | 6,018,948 | 8.2
9.5 | 2,025,284 | 15.8 | 586,993 | 21.9 | 201,858 | 26.3
21.3 | 121,790
88,936 | 28.3
21.8 | 35,906 | 27.9
27.9 | 11,091,619 | 7.9
11.2 | 3,712,515 | 15.0 | | 2001 | 1,781,293
1,670,431 | 17.4
17.1 | 641,567
545,567 | 22.6 | 6,184,966 | 10.8 | 1,849,989
2,053,397 | 14.6
18.0 | 816,650
854,311 | 16.4
17.0 | 290,637
273,201 | 20.2 | 90,982 | 26.1 | 33,982
33,016 | 29.7 | 7,365,829
6,778,238 | 11.5 | 2,409,330
2,352,328 | 16.7
17.5 | | 2002 2003 | 1,070,431 | 17.1 | 404,338 | 21.7 | 6,266,166 | 10.8 | , , , , , , , , , , , , , , , , , , , | 18.6 | 930,576 | 20.8 | 289,313 | 26.9 | , | 23.4 | | 29.7 | · · · · · · | 9.5 | 3,736,073 | 17.3 | | 2003 | 1,172,837 | 17.8 | 386,806 | 22.6 | 5,286,909
3,841,642 | 10.2 | 1,718,114
1,223,227 | 15.4 | 701,938 | 19.9 | 252,030 | 25.3 | 172,327
149,844 | 27.6 | 66,101
52,254 | 29.7 | 10,682,302
9,847,326 | 9.5 | 3,369,107 | 17.8 | | 2004 | 954,552 | 24.2 | 329,037 | 28.2 | 3,505,968 | 11.8 | 1,131,872 | 17.0 | 770,173 | 15.0 | 255,092 | 21.8 | 87,557 | 25.3 | 30,737 | 27.2 | 10,903,988 | 9.7 | 3,744,965 | 16.4 | | 2005 | 699,933 | 16.3 | 227,405 | 20.2 | 4,124,647 | 11.7 | 1,361,914 | 18.2 | 616,668 | 30.1 | 178,526 | 30.8 | 41,784 | 27.7 | 13,966 | 30.2 | 11,930,250 | 9.1 | 4,301,096 | 16.2 | | 2007 | 818,643 | 15.4 | 279,147 | 19.4 | 4,630,404 | 11.5 | 1,539,046 | 18.3 | 308,039 | 21.2 | 100,962 | 24.9 | 78,231 | 25.8 | 27,959 | 31.2 | 9,924,934 | 8.4 | 3,372,169 | 15.8 | | 2007 | 1,320,182 | 14.8 | 443,174 | 20.6 | 5,074,358 | 8.1 | 1,689,068 | 14.6 | 609,401 | 23.6 | 195,937 | 28.0 | 50,063 | 26.0 | 17,563 | 28.6 | 13,158,192 | 9.4 | 4,636,757 | 16.2 | | 2009 | 1,788,575 | 14.5 | 600,705 | 21.0 | 6,242,208 | 9.6 | 2,054,138 | 17.3 | 744,464 | 19.5 | 222,282 | 23.8 | 89,961 | 28.4 | 31,515 | 31.9 | 13,919,234 | 10.0 | 4,676,052 | 16.5 | | 2010 | 1,813,254 | 14.9 | 631,758 | 20.5 | 7,335,948 | 10.2 | 2,550,321 | 16.2 | 711,836 | 21.9 | 247,398 | 26.3 | 111,912 | 23.5 | 40,390 | 25.4 | 9,190,616 | 12.6 | 3,268,802 | 20.1 | | 2011 | 1,390,360 | 14.9 | 469,280 | 19.0 | 4,744,947 | 9.7 | 1,522,357 | 15.5 | 259,735 | 17.7 | 86,003 | 21.4 | 85,027 | 24.1 | 31,292 | 27.7 | 10,091,732 | 9.5 | 3,470,918 | 16.1 | | 2012 | 1,136,427 | 13.3 | 367,841 | 18.5 | 5,374,152 | 8.9 | 1,783,819 | 16.5 | 422,968 | 13.4 | 135,356 | 18.5 | 152,363 | 24.3 | 53,816 | 27.4 | 13,175,745 | 8.7 | 4,589,246 | 17.3 | | 2013 | 1,709,164 | 12.2 | 581,107 | 17.5 | 6,088,863 | 9.9 | 1,998,284 | 15.9 | 398,767 | 14.8 | 132,773 | 20.6 | 197,844 | 21.3 | 73,027 | 25.1 | 13,404,945 | 10.3 | 4,614,319 | 17.0 | | 2013 | 1,702,104 | 12.2 | 330,955 | 24.0 | 2,000,003 | 7.7 | 1,609,006 | 11.8 | 370,707 | 1 | 148,454 | 38.3 | 177,017 | 21.3 | 44,345 | 56.6 | 13,101,743 | 10.5 | 2,316,191 | 11.3 | | 2015 | | | 295,893 | 21.4 | | | 1,486,227 | 10.3 | | | 98,800 | 30.3 | | | 30,296 | 41.4 | | | 3,440,509 | 12.3 | | 2016 | | | 161,733 | 21.0 | | | 1,096,370 | 6.4 | | | 47,135 | 25.6 | | | 29,612 | 24.3 | | | 3,643,636 |
8.6 | | FM = | Shore |------|-----------|---------|----------|------|-----------|-------|----------|------|-----------|--------|----------|-------|----------|---------|----------|-------|-----------|----------|----------|------| | | | Black l | Drum | | | Red D | rum | | | Sheeps | shead | | So | outhern | Flounder | | S | potted S | Seatrout | | | | MRIP |) | LA Cre | eel | MRIF |) | LA Cr | eel | MRII |) | LA Cr | eel | MRI | P | LA Cı | reel | MRII | | LA Cre | eel | | Year | Discards | PSE | 1982 | 149,995 | 64.4 | 19,100 | 81.1 | 364,343 | 26.2 | 48,582 | 45.4 | 89,674 | 57.7 | 10,792 | 71.0 | 128,975 | 30.5 | 14,650 | 50.4 | 386,524 | 48.1 | 47,837 | 62.3 | | 1983 | 69,276 | 40.0 | 5,936 | 60.9 | 15,283 | 79.9 | 1,417 | 73.4 | 25,959 | 61.6 | 2,774 | 59.0 | | | | | 7,794 | 83.8 | 1,312 | 88.6 | | 1984 | 285,887 | 32.0 | 19,441 | 48.5 | 83,103 | 84.6 | 5,554 | 90.6 | 12,248 | 103.2 | 2,062 | 105.1 | 3,384 | 99.3 | 290 | 100.4 | 59,529 | 52.1 | 4,649 | 51.5 | | 1985 | 138,851 | 42.9 | 11,318 | 55.3 | 32,336 | 53.0 | 2,763 | 51.6 | 155,985 | 38.0 | 10,990 | 48.3 | 12,292 | 79.8 | 830 | 80.6 | 603,943 | 44.5 | 44,912 | 47.2 | | 1986 | 107,212 | 49.6 | 7,372 | 54.2 | 19,379 | 65.3 | 1,624 | 60.4 | 473,615 | 72.5 | 33,039 | 74.9 | 11,853 | 75.8 | 921 | 77.8 | 267,044 | 41.3 | 21,357 | 38.9 | | 1987 | 102,949 | 71.9 | 7,886 | 73.2 | 352,180 | 47.9 | 25,506 | 49.6 | 36,133 | 89.7 | 3,098 | 95.1 | 13,517 | 87.5 | 1,091 | 89.2 | 642,898 | 37.9 | 60,579 | 42.2 | | 1988 | 185,774 | 51.5 | 14,729 | 61.3 | 329,574 | 30.8 | 26,758 | 37.1 | 116,937 | 36.7 | 10,189 | 42.4 | 7,726 | 52.0 | 576 | 57.0 | 205,385 | 41.4 | 22,996 | 51.5 | | 1989 | 61,484 | 38.9 | 5,308 | 46.9 | 1,080,247 | 72.5 | 118,259 | 82.8 | 115,300 | 39.3 | 10,975 | 45.9 | 49,549 | 66.9 | 3,412 | 67.5 | 311,869 | 36.9 | 26,408 | 40.8 | | 1990 | 96,587 | 44.0 | 12,814 | 60.3 | 327,612 | 37.7 | 26,362 | 47.2 | 18,485 | 89.3 | 1,251 | 93.7 | 783,955 | 82.6 | 66,386 | 86.0 | 736,838 | 34.5 | 62,271 | 40.6 | | 1991 | 237,878 | 30.6 | 23,323 | 37.8 | 1,544,560 | 43.0 | 117,501 | 46.9 | 207,958 | 30.7 | 14,069 | 48.3 | 91,471 | 44.6 | 9,555 | 47.5 | 1,902,261 | 22.7 | 209,051 | 37.4 | | 1992 | 860,902 | 31.0 | 70,997 | 33.3 | 1,833,394 | 25.8 | 156,676 | 29.2 | 514,453 | 32.0 | 39,314 | 41.6 | 49,674 | 57.6 | 4,294 | 56.5 | 1,468,815 | 20.7 | 134,383 | 28.7 | | 1993 | 1,345,395 | 39.9 | 104,766 | 45.9 | 1,630,396 | 23.1 | 162,446 | 32.3 | 1,109,224 | 51.0 | 81,363 | 54.2 | 51,220 | 62.5 | 3,660 | 68.3 | 2,544,151 | 26.7 | 310,186 | 44.4 | | 1994 | 947,564 | 31.5 | 92,207 | 35.4 | 2,220,435 | 25.8 | 177,992 | 32.1 | 690,548 | 35.8 | 51,181 | 37.4 | 27,765 | 64.3 | 1,973 | 67.3 | 2,280,973 | 19.3 | 200,469 | 28.0 | | 1995 | 602,888 | 40.5 | 45,117 | 41.0 | 942,643 | 25.9 | 80,564 | 29.3 | 72,571 | 30.1 | 8,291 | 38.9 | 18,216 | 63.3 | 1,249 | 63.7 | 1,617,673 | 19.6 | 152,401 | 30.0 | | 1996 | 493,436 | 28.1 | 49,281 | 33.9 | 1,516,179 | 39.1 | 113,893 | 40.7 | 295,818 | 49.5 | 22,680 | 48.2 | 123,621 | 57.8 | 15,883 | 74.4 | 2,271,614 | 31.3 | 295,972 | 53.1 | | 1997 | 1,032,761 | 51.8 | 83,634 | 50.5 | 1,179,933 | 27.3 | 95,188 | 34.5 | 199,864 | 33.2 | 16,220 | 37.9 | 71,388 | 41.3 | 7,967 | 48.9 | 2,076,029 | 22.6 | 197,373 | 33.0 | | 1998 | 1,033,214 | 43.8 | 78,806 | 45.8 | 2,262,074 | 26.0 | 189,917 | 33.0 | 207,500 | 34.3 | 18,802 | 41.7 | 39,280 | 40.3 | 3,078 | 43.3 | 1,721,873 | 25.1 | 211,949 | 48.4 | | 1999 | 532,125 | 37.2 | 41,454 | 46.1 | 1,281,413 | 23.5 | 123,086 | 32.0 | 51,091 | 32.2 | 4,175 | 42.3 | 68,459 | 49.6 | 6,737 | 57.2 | 4,103,241 | 23.1 | 353,553 | 30.9 | | 2000 | 955,854 | 28.8 | 67,785 | 40.4 | 1,948,980 | 22.8 | 174,209 | 30.3 | 265,642 | 61.1 | 20,300 | 56.9 | 24,518 | 50.4 | 1,952 | 53.5 | 2,552,559 | 34.6 | 197,526 | 37.5 | | 2001 | 1,404,055 | 37.8 | 132,125 | 44.9 | 1,702,671 | 23.4 | 149,553 | 28.9 | 627,865 | 66.9 | 46,605 | 65.6 | 267,359 | 75.6 | 34,971 | 75.6 | 2,252,160 | 31.5 | 175,034 | 33.5 | | 2002 | 559,039 | 30.6 | 42,687 | 35.5 | 1,187,635 | 24.6 | 93,346 | 28.8 | 192,094 | 28.9 | 15,190 | 36.7 | 132,712 | 47.7 | 10,853 | 49.7 | 1,035,758 | 30.9 | 89,243 | 35.9 | | 2003 | 1,024,308 | 33.3 | 97,787 | 39.2 | 744,196 | 31.1 | 68,597 | 37.0 | 114,932 | 46.8 | 10,857 | 48.3 | 299,436 | 63.4 | 28,993 | 64.7 | 1,546,106 | 34.1 | 113,669 | 37.9 | | 2004 | 477,328 | 44.0 | 35,200 | 46.7 | 944,587 | 31.1 | 78,277 | 32.1 | 83,683 | 37.1 | 8,907 | 46.5 | 24,033 | 55.8 | 1,613 | 59.6 | 1,547,223 | 44.2 | 171,926 | 58.2 | | 2005 | 793,236 | 24.4 | 72,502 | 32.7 | 1,986,884 | 22.7 | 184,683 | 38.9 | 322,768 | 29.1 | 25,309 | 36.5 | 127,575 | 57.7 | 10,118 | 61.3 | 895,780 | 34.2 | 84,088 | 37.7 | | 2006 | 1,085,517 | 44.4 | 88,671 | 42.9 | 2,355,407 | 21.3 | 234,798 | 36.0 | 670,528 | 47.6 | 47,895 | 50.2 | 109,904 | 38.3 | 14,008 | 53.5 | 1,144,271 | 28.0 | 108,628 | 34.3 | | 2007 | 464,018 | 30.3 | 50,691 | 42.4 | 1,109,367 | 20.9 | 102,287 | 30.2 | 256,654 | 49.1 | 21,786 | 44.7 | 96,680 | 53.7 | 15,629 | 66.9 | 929,550 | 25.0 | 96,819 | 36.3 | | 2008 | 901,587 | 24.4 | 74,919 | 30.1 | 1,912,635 | 19.8 | 149,123 | 25.8 | 248,799 | 29.8 | 17,155 | 39.8 | 12,748 | 60.9 | 1,198 | 65.4 | 1,377,270 | 27.7 | 114,490 | 31.4 | | 2009 | 417,567 | 31.0 | 37,138 | 32.2 | 1,414,008 | 28.6 | 120,295 | 33.9 | 384,706 | 30.4 | 34,876 | 34.0 | 87,082 | 93.5 | 5,992 | 93.7 | 927,737 | 30.0 | 103,308 | 44.0 | | 2010 | 572,004 | 29.7 | 53,063 | 30.8 | 1,506,818 | 23.6 | 146,558 | 36.2 | 583,189 | 30.2 | 43,420 | 36.4 | 74,678 | 40.5 | 7,322 | 49.4 | 828,375 | 54.9 | 59,780 | 56.2 | | 2011 | 1,434,105 | 21.3 | 125,761 | 28.7 | 1,860,121 | 22.2 | 152,108 | 27.7 | 249,435 | 48.1 | 20,780 | 45.8 | 103,717 | 65.2 | 6,984 | 66.3 | 719,286 | 25.7 | 60,778 | 32.8 | | 2012 | 1,263,476 | 24.4 | 124,775 | 32.1 | 977,186 | 35.2 | 84,370 | 34.7 | 175,964 | 43.2 | 12,527 | 46.9 | 52,159 | 45.4 | 5,726 | 57.4 | 674,174 | 31.1 | 71,681 | 37.4 | | 2013 | 2,271,755 | 9.7 | 183,679 | 24.0 | 3,675,890 | 9.3 | 307,193 | 20.5 | 939,354 | 18.9 | 71,453 | 33.6 | 41,427 | 37.2 | 2,945 | 43.0 | 5,525,367 | 8.1 | 482,847 | 23.7 | | 2014 | | | 79,920 | 38.8 | | | 375,249 | 12.4 | | | 51,901 | 55.7 | | | 9,346 | 53.3 | | | 594,294 | 15.1 | | 2015 | | | 76,780 | 21.4 | | | 378,245 | 11.5 | | | 23,835 | 34.1 | | | 9,300 | 45.9 | | | 727,719 | 12.3 | | 2016 | | | 50,106 | 21.9 | | | 275,986 | 8.7 | | | 24,951 | 66.9 | | | 9,495 | 37.5 | | | 892,875 | 11.4 | | | | 71 | |----|-----|-----------| | FM | - (| lharter : | | | | | | 1 1/1 - | | Black l | Drum | | | Red I | Drum | | | Sheeps | shead | | So | uthern 1 | Flounder | | S | potted S | Seatrout | | |---------|----------|---------|----------|------|----------|-------|----------|------|----------|--------|----------|------|----------|----------|----------|------|----------|----------|----------|------| | | MRI | P | LA Cre | eel | MRII |) | LA Cre | eel | MRI | P | LA Cre | eel | MRI | P | LA Cre | eel | MRII |) | LA Cre | eel | | Year | Discards | PSE | 1982 | | | | | | | | | | | | | | | | | 7,252 | 32.4 | | | | 1983 | | | | | | | | | | | | | 352 | 57.8 | | | 121,816 | 54.1 | | | | 1984 | 182 | 112.8 | | | | | | | 1,166 | 78.8 | | | | | | | 116 | 101.5 | | | | 1985 | | | | | | | | | 587 | 107.7 | | | | | | | 42,739 | 26.9 | | | | 1986 | | | | | 25 | 55.4 | | | 266 | 97.1 | | | | | | | 16,514 | 42.5 | | | | 1987 | 2,752 | 45.9 | | | 2,597 | 42.5 | | | 2,484 | 64.6 | | | | | | | 64,522 | 30.1 | | | | 1988 | 5 | 106.1 | | | 1,561 | 59.4 | | | | | | | / | | | | 59,254 | 37.7 | | | | 1989 | 298 | 63.1 | | | 26,854 | 45.6 | | | 1,199 | 62.5 | | | 1,401 | 106.9 | | | 190,285 | 38.2 | | | | 1990 | 6,449 | 56.2 | | | 30,305 | 40.5 | | | 16,177 | 94.7 | | | 445 | 57.1 | | | 39,578 | 32.1 | | | | 1991 | 3,258 | 52.2 | | | 46,366 | 44.7 | | | 1,641 | 52.5 | | | 280 | 82.8 | | | 144,689 | 30.9 | | | | 1992 | 7,421 | 46.7 | | | 63,966 | 35.7 | | | 3,664 | 55.2 | | | 225 | 61.5 | | | 91,373 | 31.5 | | | | 1993 | 410 | 71.7 | | | 58,230 | 19.2 | | | | | | | | | | | 155,919 | 30.0 | | | | 1994 | 329 | 100.1 | | | 70,705 | 32.6 | | | 1,123 | 61.4 | | | | | | | 243,186 | 36.3 | | | | 1995 | 2,606 | 72.8 | | | 198,687 | 34.0 | | | 1,654 | 110.7 | | | | | | | 300,673 | 31.6 | | | | 1996 | 4,776 | 74.9 | | | 113,101 | 28.6 | | | 406 | 56.1 | | | 843 | 103.1 | | | 223,999 | 36.0 | | | | 1997 | 20,581 | 37.1 | | | 157,816 | 23.0 | | | 19,422 | 46.2 | | | 490 | 68.4 | | | 260,983 | 23.5 | | | | 1998 | 18,161 | 43.4 | | | 138,650 | 25.5 | | | 8,030 | 44.8 | | | 647 | 48.0 | | | 199,955 | 31.8 | | | | 1999 | 12,980 | 33.2 | | | 105,462 | 22.3 | | | 5,944 | 40.9 | | | 520 | 57.8 | | | 277,771 | 21.3 | | | | 2000 | 10,335 | 28.4 | | | 108,340 | 13.2 | | | 1,739 | 48.3 | | | 259 | 59.4 | | | 175,694 | 15.8 | | | | 2001 | 13,566 | 28.8 | | | 203,577 | 19.3 | | | 12,615 | 31.6 | | | 1,224 | 72.4 | | | 211,516 | 15.0 | | | | 2002 | 9,657 | 30.9 | | | 138,601 | 17.2 | | | 4,954 | 29.6 | | | 1,248 | 50.0 | | | 104,977 | 25.3 | | | | 2003 | 25,831 | 34.0 | | | 129,125 | 18.5 | | | 16,306 | 53.2 | | | 982 | 53.9 | | | 170,658 | 26.6 | | | | 2004 | 13,050 | 32.7 | | | 105,936 | 14.2 | | | 10,370 | 38.8 | | | 503 | 55.6 | | | 221,275 | 16.5 | | | | 2005 | 5,692 | 45.0 | | | 53,333 | 25.0 | | | 3,190 | 61.4 | | | | | | | 263,044 | 26.2 | | | | 2006 | 30,916 | 38.8 | | | 144,300 | 48.0 | | / | 10,206 | 71.3 | | | 10.6 | | | | 464,015 | 26.8 | | | | 2007 | 13,350 | 37.3 | | | 178,892 | 21.5 | | | 23,101 | 34.4 | | | 486 | 60.6 | | | 238,335 | 19.0 | | | | 2008 | 31,830 | 33.1 | | | 198,411 | 16.5 | | | 30,031 | 55.1 | | | 1,197 | 59.3 | | | 323,315 | 17.3 | | | | 2009 | 62,094 | 27.2 | | | 332,961 | 19.7 | | | 16,588 | 52.9 | | | 98 | 71.3 | | | 356,216 | 17.4 | | | | 2010 | 38,261 | 33.5 | | | 151,250 | 23.0 | | | 10,938 | 36.4 | | | 69 | 107.9 | | | 167,473 | 21.6 | | | | 2011 | 29,517 | 38.0 | | | 203,917 | 17.0 | | | 5,021 | 34.4 | | | 640 | 62.2 | | | 149,933 | 27.4 | | | | 2012 | 21,344 | 30.0 | | |
153,584 | 17.6 | | | 5,844 | 46.6 | | | 2,353 | 48.7 | | | 205,441 | 22.7 | | | | 2013 | 83,501 | 7.5 | 14.002 | 21.5 | 281,131 | 7.2 | 252 242 | 10.2 | 48,342 | 11.3 | 2.706 | 10.6 | 12,017 | 15.1 | 1.40 | 52.7 | 222,879 | 7.6 | 216 902 | 20.4 | | 2014 | | | 14,093 | 31.5 | | - | 353,243 | 19.2 | | | 2,706 | 40.6 | | | 442 | 53.7 | | | 316,892 | 29.4 | | 2015 | | | 14,464 | 32.7 | | | 403,525 | 14.1 | | | 16,575 | 50.0 | | | 553 | 46.7 | | | 413,119 | 18.4 | | 2016 | | | 16,975 | 33.3 | | | 338,910 | 7.4 | | | 10,778 | 23.1 | | | 497 | 31.4 | | | 439,247 | 9.6 | #### Appendix 2: JOHN BEL EDWARDS GOVERNOR JACK MONTOUCET SECRETARY Estimates of Spotted Seatrout and Red Drum Bycatch in the Louisiana Menhaden Reduction Fishery # Louisiana Department of Wildlife and Fisheries #### Office of Fisheries #### Overview The Gulf menhaden reduction fishery is the largest commercial fishery operating in the Gulf of Mexico with the majority of landings occurring in Louisiana (LA) waters. Estimates of spotted seatrout (SST) and red drum (RD) incidental bycatch from the menhaden fishery have been requested to allow comparisons of menhaden fishery bycatch in LA waters relative to the directed LA fisheries. Incidental bycatch has been characterized in the Gulf menhaden fishery from both at-sea and processing plant studies that were reviewed in SEDAR49-DW-04 (Sagarese et al. 2016). The earlier bycatch studies reviewed did not characterize released catches, only the retained portion, limiting their utility for total bycatch estimation. The more recent studies conducted characterized both released and retained catches (Condrey 1994, de Silva and Condrey 1997, Pulver and Scott Denton 2012* as reviewed in Sagarese et al. 2016). Bycatch observations categorized as kept in Pulver and Scott Denton 2012* are considered retained catches. #### Methods The bycatch information from the Gulf menhaden fishery used in this analysis was limited to the studies where both retained and released catches were reported along with the number of purse-seine sets observed allowing calculation of per set catch rates for SST and RD (Tables 1 and 2). Catch per set observations are summarized across studies (mean, minimum, and maximum) to provide a range of catch rates that are assumed constant through time and representative of catches in LA waters. The most recent study (Pulver and Scott-Denton 2012*) accounted only for bycatch >50 cm (19.7 inches) and is excluded from the SST analysis for that reason. Annual bycatch can be estimated by expanding the catch per set observations from the annual menhaden fishery effort (number of purse-seine sets per year). Annual menhaden fishery effort observations in LA waters are confidential. To avoid issues reporting bycatch estimates developed from confidential observations, fishery effort is estimated for all years included in this analysis (1982-2019, Figure 1) from a linear regression between the currently available annual effort observations (2000-2018) and the corresponding landings in pounds (sets=1.114E-05*landings + 8.247E+03, p=0.01, r²=0.37). Time-series of LA spotted seatrout and red drum incidental bycatch from the menhaden fishery (1982-2019, Table 3) are estimated by summing the product of the retained and released catches per set (mean, minimum, and maximum), the estimated annual LA menhaden fishery effort, and assumed mortality rates of the catches. All retained catches are assumed to die and released SST and RD catches are assumed to have 100% and 75% mortality rates respectively. No information is available on the mortality of released SST in the menhaden fishery, and observations of RD dead releases averaged across studies included in this analysis indicates a 45% mortality rate. That estimate is increased to account for delayed mortality of the live releases that are disoriented or injured. Bycatch in units of numbers are converted into weight with assumptions of mean weight of the catches. Mean weight of red drum catches are assumed to be 12.6 pounds based on observations of the LDWF nearshore bottom longline survey and 1.44 pounds for SST assuming a 16-inch mean total length of the catches and applying the conversions in West et al. (2019). Recreational landings estimates are taken from the LA Creel survey (2014-2019) and estimates hindcast to the historic MRIP time-series (1982-2013, West et al. 2019). Commercial landings are taken from the LDWF Trip Ticket program (1999-2019) and NOAA Fisheries commercial statistical records (1982-1998, NOAA Fisheries 2020). #### Results Louisiana bycatch estimates (mean, minimum, and maximum) in units of weight are compared to the SST and RD landings from the recreational and commercial LA fisheries (Table 4). Bycatch estimates of SST relative to the landings of the directed LA fisheries are minimal. Estimates of SST bycatch from the menhaden fishery in units of weight in the most recent decade are all less than one tenth of one percent (maximum=0.09%, mean=0.07%, minimum=0.06%) when compared to the landings of the commercial and recreational LA fisheries (Figure 2). Bycatch estimates of red drum relative to the directed LA fisheries are also minimal but of greater magnitude than SST estimates. Estimates of RD bycatch from the menhaden fishery in units of weight in the most recent decade range from 4.4% (maximum) to 0.3% (minimum) with a mean of 2.1% when compared to the landings of the directed LA fisheries (Figure 3). #### Literature Cited - Condrey, R. 1994. Bycatch in the U.S. Gulf of Mexico menhaden fishery. Results of onboard sampling conducted in the 1992 fishing season. Louisiana State University, Baton Rouge, LA. - de Silva, J.A., and R. Condrey. 1997. Bycatch in the U.S. Gulf of Mexico menhaden fishery. Results of onboard sampling conducted in the 1994 and 1995 fishing seasons. Louisiana State University, Baton Rouge, LA. - NOAA Fisheries 2020. NOAA Fisheries Office of Science and Technology, Commercial Landings Query, Available at: https://foss.nmfs.noaa.gov (Accessed 6/15/2020) - Pulver, J. R., and E. Scott-Denton. 2012. Observer coverage of the 2011 Gulf of Mexico menhaden fishery. *Publication not available, data taken from Sagarese et al. 2016. - Sagarese, S.R., Matthew A. Nuttall, Joseph E. Serafy and Elizabeth Scott-Denton. 2016. Review of bycatch in the Gulf menhaden fishery with implications for the stock assessment of red drum. SEDAR49-DW-04. SEDAR, North Charleston, SC. 30 pp. - West, J., X. Zhang, and J. Adriance. 2019. Assessment of spotted seatrout in Louisiana waters. 2019 Report of the Louisiana Department of Wildlife and Fisheries. 73 pp. ## **Tables** Table 1: Spotted seatrout released and retained catches, number of sets observed, and the mean, minimum, and maximum catches per set across studies. | | | | re | leased | catch | re | tained | catch | |-------------------------------|------|---------|------|--------|----------|------|--------|----------| | Study | Year | Species | fish | sets | fish/set | fish | sets | fish/set | | Condrey 1994 | 1992 | SST | 19 | 127 | 0.15 | 0 | 49 | 0.00 | | de Silva and Condrey 1997 | 1994 | SST | 26 | 235 | 0.11 | 3 | 220 | 0.01 | | de Silva and Condrey 1997 | 1995 | SST | 41 | 257 | 0.16 | 1 | 199 | 0.01 | | Pulver and Scott-Denton 2012* | 2011 | SST | 0 | 223 | 0.00 | 0 | 223 | 0.00 | | | | Min | | | 0.11 | | | 0.000 | | | | Mean | | | 0.14 | | | 0.006 | | | | Max | | | 0.16 | | | 0.014 | Table 2: Red drum released and retained catches, number of sets observed, and the mean, minimum, and maximum catches per set across studies. | | | | re | leased | catch | re | tained | catch | |-------------------------------|------|---------|------|--------|----------|------|--------|----------| | Study | Year | Species | fish | sets | fish/set | fish | sets | fish/set | | Condrey 1994 | 1992 | Rdrum | 15 | 127 | 0.12 | 0 | 49 | 0.00 | | de Silva and Condrey 1997 | 1994 | Rdrum | 116 | 235 | 0.49 | 3 | 220 | 0.01 | | de Silva and Condrey 1997 | 1995 | Rdrum | 245 | 257 | 0.95 | 0 | 199 | 0.00 | | Pulver and Scott-Denton 2012* | 2011 | Rdrum | 368 | 223 | 1.65 | 32 | 223 | 0.14 | | | | Min | | | 0.12 | | | 0.00 | | | | Mean | | | 0.80 | | | 0.04 | | | | Max | / | | 1.65 | | | 0.14 | Table 3: Time-series of LA spotted seatrout and red drum total bycatch estimates (numbers of fish) from 1982-2019 for the maximum, mean, and minimum catch per set observations. | | SS | T Bycat | ch | RI | D Bycatcl | 1 | |------|-------|---------|-------|--------|-----------|-------| | Year | max | mean | min | max | mean | min | | 1982 | 4,478 | 3,779 | 2,861 | 35,684 | 16,597 | 2,291 | | 1983 | 4,813 | 4,062 | 3,075 | 38,355 | 17,839 | 2,462 | | 1984 | 4,818 | 4,066 | 3,078 | 38,393 | 17,857 | 2,464 | | 1985 | 4,377 | 3,694 | 2,797 | 34,884 | 16,225 | 2,239 | | 1986 | 4,244 | 3,582 | 2,712 | 33,823 | 15,731 | 2,171 | | 1987 | 4,535 | 3,827 | 2,897 | 36,139 | 16,808 | 2,320 | | 1988 | 3,583 | 3,024 | 2,289 | 28,555 | 13,281 | 1,833 | | 1989 | 3,395 | 2,865 | 2,169 | 27,056 | 12,584 | 1,737 | | 1990 | 3,184 | 2,687 | 2,034 | 25,371 | 11,800 | 1,629 | | 1991 | 3,377 | 2,850 | 2,157 | 26,910 | 12,516 | 1,727 | | 1992 | 2,947 | 2,487 | 1,883 | 23,484 | 10,923 | 1,507 | | 1993 | 3,471 | 2,929 | 2,218 | 27,659 | 12,865 | 1,775 | | 1994 | 4,331 | 3,655 | 2,767 | 34,513 | 16,052 | 2,215 | | 1995 | 3,206 | 2,706 | 2,048 | 25,548 | 11,883 | 1,640 | | 1996 | 3,253 | 2,746 | 2,079 | 25,926 | 12,059 | 1,664 | | 1997 | 3,776 | 3,186 | 2,412 | 30,089 | 13,995 | 1,931 | | 1998 | 3,181 | 2,684 | 2,032 | 25,347 | 11,789 | 1,627 | | 1999 | 4,134 | 3,488 | 2,641 | 32,941 | 15,321 | 2,114 | | 2000 | 3,509 | 2,961 | 2,242 | 27,962 | 13,005 | 1,795 | | 2001 | 3,088 | 2,606 | 1,973 | 24,607 | 11,445 | 1,580 | | 2002 | 3,540 | 2,988 | 2,262 | 28,211 | 13,121 | 1,811 | | 2003 | 3,269 | 2,759 | 2,088 | 26,049 | 12,116 | 1,672 | | 2004 | 3,094 | 2,611 | 1,977 | 24,653 | 11,466 | 1,582 | | 2005 | 2,697 | 2,277 |
1,723 | 21,497 | 9,998 | 1,380 | | 2006 | 2,869 | 2,421 | 1,833 | 22,862 | 10,633 | 1,468 | | 2007 | 2,952 | 2,491 | 1,886 | 23,526 | 10,942 | 1,510 | | 2008 | 2,859 | 2,413 | 1,826 | 22,781 | 10,595 | 1,462 | | 2009 | 2,944 | 2,485 | 1,881 | 23,463 | 10,913 | 1,506 | | 2010 | 2,680 | 2,262 | 1,712 | 21,356 | 9,933 | 1,371 | | 2011 | 3,615 | 3,051 | 2,310 | 28,811 | 13,400 | 1,849 | | 2012 | 3,078 | 2,598 | 1,967 | 24,533 | 11,410 | 1,575 | | 2013 | 3,072 | 2,593 | 1,963 | 24,485 | 11,388 | 1,572 | | 2014 | 2,775 | 2,342 | 1,773 | 22,118 | 10,287 | 1,420 | | 2015 | 3,165 | 2,671 | 2,022 | 25,219 | 11,730 | 1,619 | | 2016 | 2,992 | 2,525 | 1,912 | 23,843 | 11,089 | 1,530 | | 2017 | 2,767 | 2,335 | 1,768 | 22,047 | 10,254 | 1,415 | | 2018 | 3,087 | 2,606 | 1,973 | 24,604 | 11,444 | 1,579 | | 2019 | 2,862 | 2,416 | 1,829 | 22,810 | 10,609 | 1,464 | Table 4: Comparisons of LA spotted seatrout and red drum recreational and commercial landings (in pounds), and bycatch estimates (in pounds) from 1982-2019 for the maximum, mean, and minimum catch per set observations. Confidential commercial landings records (***) are not presented | | SST La | ındings | SS | T Bycat | ch | RD La | ndings | R | D Bycatch | | |------|-----------|-----------|-------|---------|-------|-----------|-----------|---------|-----------|--------| | Year | rec | com | max | mean | min | rec | com | max | mean | min | | 1982 | 4,869,061 | 727,606 | 6,429 | 5,426 | 4,107 | 2,855,725 | 1,454,503 | 450,138 | 209,363 | 28,894 | | 1983 | 4,173,565 | 1,340,625 | 6,910 | 5,832 | 4,415 | 2,952,651 | 1,938,615 | 483,829 | 225,033 | 31,057 | | 1984 | 1,362,509 | 973,250 | 6,917 | 5,837 | 4,419 | 2,367,474 | 2,608,383 | 484,310 | 225,257 | 31,088 | | 1985 | 2,903,358 | 1,161,598 | 6,285 | 5,304 | 4,015 | 2,174,399 | 2,933,573 | 440,046 | 204,669 | 28,246 | | 1986 | 6,140,234 | 1,978,038 | 6,094 | 5,143 | 3,893 | 1,993,626 | 7,817,694 | 426,663 | 198,445 | 27,387 | | 1987 | 4,854,132 | 1,801,874 | 6,511 | 5,495 | 4,160 | 2,306,832 | 4,571,177 | 455,876 | 212,032 | 29,263 | | 1988 | 5,313,332 | 1,433,408 | 5,145 | 4,342 | 3,287 | 2,424,843 | 245,365 | 360,214 | 167,539 | 23,122 | | 1989 | 4,553,228 | 1,488,878 | 4,874 | 4,114 | 3,114 | 3,251,530 | 24,811 | 341,302 | 158,742 | 21,908 | | 1990 | 2,246,316 | 648,645 | 4,571 | 3,858 | 2,920 | 2,977,243 | 0 | 320,042 | 148,854 | 20,543 | | 1991 | 6,131,699 | 1,220,231 | 4,848 | 4,092 | 3,098 | 2,804,216 | 0 | 339,464 | 157,888 | 21,790 | | 1992 | 4,047,596 | 971,481 | 4,231 | 3,571 | 2,703 | 4,072,597 | 0 | 296,240 | 137,784 | 19,016 | | 1993 | 3,680,464 | 1,138,070 | 4,983 | 4,205 | 3,184 | 5,087,621 | 1,884 | 348,913 | 162,282 | 22,397 | | 1994 | 5,287,571 | 1,023,687 | 6,218 | 5,248 | 3,973 | 4,610,560 | 2,957 | 435,373 | 202,496 | 27,946 | | 1995 | 5,897,013 | 658,084 | 4,603 | 3,884 | 2,941 | 7,502,450 | 0 | 322,280 | 149,895 | 20,687 | | 1996 | 5,633,898 | 774,474 | 4,671 | 3,942 | 2,984 | 7,157,264 | 1,925 | 327,053 | 152,115 | 20,993 | | 1997 | 5,429,323 | 549,505 | 5,421 | 4,575 | 3,463 | 7,128,952 | 0 | 379,562 | 176,537 | 24,364 | | 1998 | 5,177,850 | 111,979 | 4,567 | 3,854 | 2,918 | 5,442,578 | 4,769 | 319,748 | 148,717 | 20,524 | | 1999 | 7,323,715 | *** | 5,935 | 5,009 | 3,792 | 6,642,380 | 0 | 415,536 | 193,269 | 26,673 | | 2000 | 8,118,153 | *** | 5,038 | 4,251 | 3,219 | 8,288,060 | 0 | 352,729 | 164,057 | 22,642 | | 2001 | 7,185,774 | *** | 4,433 | 3,741 | 2,832 | 7,417,608 | 0 | 310,406 | 144,373 | 19,925 | | 2002 | 5,012,133 | *** | 5,082 | 4,289 | 3,247 | 7,196,064 | 0 | 355,868 | 165,517 | 22,843 | | 2003 | 5,186,776 | *** | 4,693 | 3,961 | 2,998 | 6,592,330 | 0 | 328,603 | 152,836 | 21,093 | | 2004 | 4,332,901 | *** | 4,442 | 3,748 | 2,838 | 5,778,575 | 0 | 310,993 | 144,646 | 19,963 | | 2005 | 4,564,983 | *** | 3,873 | 3,268 | 2,474 | 4,733,062 | 0 | 271,174 | 126,125 | 17,407 | | 2006 | 6,745,371 | *** | 4,119 | 3,476 | 2,632 | 5,098,331 | 0 | 288,400 | 134,137 | 18,512 | | 2007 | 5,530,280 | *** | 4,238 | 3,577 | 2,708 | 6,061,853 | 0 | 296,768 | 138,029 | 19,049 | | 2008 | 7,164,674 | *** | 4,104 | 3,464 | 2,622 | 6,672,823 | 0 | 287,370 | 133,658 | 18,446 | | 2009 | 7,817,443 | *** | 4,227 | 3,568 | 2,701 | 7,355,418 | 0 | 295,983 | 137,664 | 18,999 | | 2010 | 6,184,412 | *** | 3,848 | 3,247 | 2,458 | 8,346,255 | 0 | 269,401 | 125,301 | 17,293 | | 2011 | 8,525,814 | *** | 5,191 | 4,381 | 3,316 | 8,304,959 | 0 | 363,442 | 169,040 | 23,329 | | 2012 | 8,163,839 | *** | 4,420 | 3,730 | 2,824 | 6,044,853 | 0 | 309,474 | 143,939 | 19,865 | | 2013 | 5,622,064 | *** | 4,411 | 3,723 | 2,818 | 7,928,973 | 0 | 308,867 | 143,657 | 19,826 | | 2014 | 3,251,893 | *** | 3,985 | 3,363 | 2,546 | 6,367,723 | 0 | 279,007 | 129,769 | 17,909 | | 2015 | 4,686,909 | *** | 4,543 | 3,834 | 2,903 | 6,072,877 | 0 | 318,130 | 147,965 | 20,421 | | 2016 | 5,367,655 | *** | 4,295 | 3,625 | 2,744 | 4,711,394 | 0 | 300,766 | 139,889 | 19,306 | | 2017 | 5,721,125 | *** | 3,972 | 3,352 | 2,538 | 6,422,647 | 0 | 278,114 | 129,353 | 17,852 | | 2018 | 2,982,455 | *** | 4,433 | 3,741 | 2,832 | 7,633,391 | 0 | 310,375 | 144,358 | 19,923 | | 2019 | 3,811,437 | *** | 4,109 | 3,468 | 2,626 | 5,171,537 | 0 | 287,740 | 133,830 | 18,470 | # **Figures** Figure 1: Time-series of estimated LA menhaden fishery effort (number of purse-seine sets per year). Figure 2: Comparison of LA spotted seatrout commercial and recreational landings, and LA menhaden bycatch estimates for the maximum (top), mean (center), and minimum (bottom) catch per set observations. Values in legends represent the mean landings percentages from 2010-2019. Figure 3: Comparison of LA red drum commercial and recreational landings, and LA menhaden bycatch estimates for the maximum (top), mean (center), and minimum (bottom) catch per set observations. Values in legends represent the mean landings percentages from 2010-2019. #### Appendix 3: JOHN BEL EDWARDS GOVERNOR JACK MONTOUCET SECRETARY #### Evaluation of Commercial Shrimp Fishery Bycatch in Louisiana Waters # Peyton Cagle and Joe West Office of Fisheries Louisiana Department of Wildlife and Fisheries November 2020 #### Overview #### Project Need In 2010, a Fisheries Improvement Project (FIP) was initiated for the commercial shrimp fishery operating in Louisiana (LA) waters as a first step in the process of achieving a sustainability certification for the fishery. This was followed by an official improvement plan for the fishery in 2012. By 2015, the LA shrimp fishery met the goals outlined in the initial plan which allowed the fishery to progress into a comprehensive FIP that addresses all issues within the fishery to ensure the fishery is in compliance with the sustainability standards outlined by the certifying body. Several action items were outlined in the comprehensive FIP, including the need for current bycatch data from the fishery to assess the main bycatch species per standards of the certifying body. The Louisiana Shrimp Task Force (LSTF) and involved members of the industry approached the Louisiana Department of Wildlife and Fisheries (LDWF) in 2016 and initiated discussions to conduct a study to characterize the current bycatch of the fishery in LA waters. In 2018, LDWF partnered with the LSTF and the American Shrimp Processors Association (ASPA) to fund a one-year observer study designed by the LDWF to focus exclusively on the bycatch of the shrimp fishery operating in LA waters, as the bycatch of the fishery operating in federal waters is monitored and reported by NOAA Fisheries. #### Project Objectives #### Objectives of this study were: - 1. Characterize the current bycatch of the commercial shrimp fishery operating in LA waters. - 2. Identify the main bycatch species of the fishery per standards of the Audubon Nature Institute (ANI) Gulf United for Lasting Fisheries (GULF) Responsible Fisheries Management (RFM) program (ANI 2020). - 3. Assess the population resilience of the main by catch species to fisheries exploitation. #### Fishery Description The commercial harvest of shrimp in LA dates back to the 1800s (LDWF 2016). As the popularity of shrimp as a food source grew in the early 1900s, the LA commercial shrimp industry expanded and commercial landings began to increase above 20 million pounds annually. Continued expansion of the industry into current times has led to the most valuable commercial fishery operating in LA waters with landings averaging over 70 million pounds annually in the most recent decade. In the early 1900s, the otter trawl was developed and became the primary fishing gear used by LA shrimp fishers. This was followed by introduction of the butterfly net in the 1950s that allowed stationary fishing in tidal passes. The introduction of skimmer nets in the 1980s, which allowed fishers to focus efforts in shallower water and fish the entire water column, was widely accepted by the LA shrimp fishery. A shift in gear preference of the LA commercial shrimp fishery has occurred over time as well as an overall decrease in license sales (Table 1). Based on commercial gear license sales, the use of otter trawl and butterfly net gear has decreased since 2000 while the use of skimmer nets has increased. The overall number of commercial licenses sold has decreased by over 70% since 2000. Commercial shrimp landings in LA waters and the corresponding number of fishery trips have also decreased since 2000 (Figure 1). Commercial landings have decreased over 30% since 2000 while the number of fishery trips has declined by over 65%. This disproportionate decrease is primarily due to the characteristics of the shrimp fishery operating in LA waters changing over time, where a noticeable decline occurred in the mid-2000's in the number of trips less than 1-day at sea. #### Regulatory Authority Regulatory authorities for the LA shrimp fishery are the Governor of Louisiana, the Louisiana Legislature, the Louisiana Wildlife and Fisheries Commission (LWFC), and the Secretary of LDWF. The Governor
has the authority to issue executive orders, in limited instances, which are enforced in the same manner as statutes passed by the legislature. The LA Legislature has the authority to enact laws to protect, conserve, and replenish the natural resources of the state, such as gear regulations, licensing requirements, and entry limitations. Some of the authority of the legislature has been delegated to the LWFC, allowing regulatory authority of seasons, quotas, size limits, and possession limits. Specific to commercial shrimping, the LWFC has the authority to open and close state outside waters, set the inshore shrimp season dates, and modify gear mesh sizes during the special shrimp seasons. The LWFC also has the authority to promulgate regulations regarding the use and configuration of excluder devices. Some authority of the LWFC is delegated to the Secretary of LDWF, including the ability to open or close special and regular shrimp seasons as well as open or close state outside waters. #### <u>Methods</u> #### Bycatch Characterization In 2019, LDWF, along with the LSTF and ASPA, initiated an observer study of the commercial shrimp fishery operating in Louisiana waters to characterize bycatch of the fishery from July 2019 through June 2020. LGL Ecological Research Associates, Inc. (LGL) was contracted for this study to provide biological staff to act as observers onboard commercial shrimp fishing vessels operating in LA waters. Fishery participants were solicited though the LSTF, social media, and LDWF news releases, and an online portal was developed for interested commercial fishers to enroll. All commercial fishers operating out of LA ports were eligible to participate in this study. Commercial vessels in which observers were placed were selected randomly from the pool of participating commercial fishers. Commercial fishers randomly drawn from this group were compensated \$350 per day for each fishing trip where bycatch was observed by an LGL biologist. Fishing trips conducted with observers onboard were not to exceed 48 hours. Trips in which observers were placed were randomly assigned proportional to the recent fishery effort (number of trips) by fishing gear, LDWF Coastal Study Area (CSA), and fishing season (spring, fall, inshore closed). Bycatch information was collected over the duration of each observed trip by sampling each tow. On vessels containing multiple nets, samples were collected by alternating which net the samples were collected from after each tow. Any observed interactions with sea turtles were to be documented, regardless of which net was sampled. For each net sampled, the total weight of the tow was estimated through a volumetric approach as described in the NOAA Observer Training Manual (NOAA Fisheries 2010). Multiple fish baskets were equally filled with the entire catch of the sampled tow and then one fish basket was randomly chosen, weighed and used to extrapolate the weight of the entire tow's catch from the number of baskets filled. Catch of the randomly chosen basket was also characterized by sorting, enumerating, and weighing each species to the nearest gram with the exception of white and brown shrimp and jellyfish species where only weight measurements were recorded. The species weight composition of the subsample was then used to extrapolate the total catch weight of each tow. Size measurements of up to thirty individuals per sampled tow were recorded for penaeid shrimp species and other selected species that are managed or commonly harvested. Large specimens that weren't included in the volumetric sampling method were identified by species, counted, released condition documented, and size or weight measurements recorded when possible. Tow times and locations were also recorded along with the position of the sampled net for each tow. #### Main Bycatch Identification The ANI GULF RFM program identifies relevant bycatch (non-target catches), whether discarded or retained, as managed non-target species (species regulated for commercial, bait, or recreational use) greater than 1% of total catch and non-managed non-target species greater than 10% of total catch (ANI 2020). #### Resilience to Exploitation Population resilience is a population's ability to withstand perturbation. Populations with higher resilience are at less risk of extinction due to fishery exploitation than populations with lower resilience. Productivity, which is a function of growth rates, fecundity, natural mortality, age at maturity, and longevity, can be a reasonable proxy for population resilience. Productivity classification indices were developed for each species identified as main bycatch from their life history characteristics based on a classification scheme developed at the Food and Agricultural Organization of the United Nations (FAO) second technical consultation on the suitability of the Convention on International Trade in Endangered Species (CITES) criteria for listing commercially-exploited aquatic species (FAO 2001). #### Results #### Bycatch Characterization Thirty-three shrimp fishing trips with 363 tows and 501 hours of tow time were observed from July 2019 through June 2020 from 12 individual commercial fishing vessels. Of the twelve participating vessels, 9 fished with skimmer nets, 2 with otter trawls, and 1 with butterfly net gear. The otter trawls were all equipped with bycatch reduction devices (BRDs) and turtle excluder devices, and two-thirds of the skimmer nets were equipped with BRDs. Observer coverage of the fishery over the course of this study was approximately 0.1% (33 observed trips/37,203 fishery trips) and nearly proportional to the number of fishery trips by gear, CSA, and fishing season with the exception of CSA 6 and 7 due to the lack of fishery participation in those areas (Table 2, Figure 2). From the 363 observed tows, 14,266 kg of total catch was observed consisting of 105 unique species or grouped species (Table 3). Four species of penaeid shrimp, 82 finfish species, 12 crustacean species (excluding penaeid shrimp), and 7 non-crustacean invertebrate species were observed. Penaeid shrimp species were the highest group caught by weight (48.1%), followed by finfish (40.2%), crustaceans other than penaeid shrimp (5.0%), and invertebrates (3.0%). Debris made up 3.7% of the total catch by weight. The most abundant species caught consisting of >1% by weight of the total catch were white shrimp (44.3%), Gulf menhaden, (14.1%), Atlantic croaker (5.4%), blue crab (4.9%), brown shrimp (3.7%), spot (3.2%), jellyfish sp. (2.9%), sand seatrout (2.8%), hardhead catfish (2.2%), gafftopsail catfish (2.1%), and Atlantic cutlassfish (2.1%). The bycatch to shrimp sample ratio error distribution was assumed lognormal and the corresponding sample ratio geometric mean in units of weight was 1.01 (Table 4). Size compositions and mean sizes of penaeid shrimp and the managed and commonly harvested species catches are presented in Table 5. Catch composition of large specimens not represented in the volumetric samples are presented in Table 6 along with released condition and corresponding size and weight measurements if available. Interactions with diamondback terrapins were observed in which all were released alive (Table 6). No interactions with sea turtles were observed. #### Main Bycatch Identification Gulf menhaden and blue crab were identified as the main bycatch species of the current LA commercial shrimp fishery per ANI standards. Both are managed species that are greater than 1% of the total catch by weight. The other non-target species consisting of greater than 1% of the total catch are non-managed species not regulated for recreational, bait, or commercial use. No non-managed non-target species was greater than 10% of the total catch by weight. #### Resilience to Exploitation Blue crab and Gulf menhaden were assigned productivity/resilience levels (high, medium, or low) based on each species life history characteristics (Table 7). Life history parameter values were taken from the most recent stock assessments if available (SEDAR 2018, West et al. 2019). Parameter values not available in the stock assessment reports were taken from FishBase (Froese and Pauly 2011) and SeaLifeBase (Palomares and Pauly 2020). Parameter values for each of the main bycatch species indicate overall high productivity/resilience. #### **Discussion** #### Historic Bycatch Ratios The bycatch to penaeid shrimp sample ratio mean from this study (1.01) is less than an earlier LDWF shrimp bycatch study conducted in LA waters (Adkins 1993). The bycatch to penaeid shrimp sample ratio mean in that study, recalculated as a geometric mean, was 1.24, suggesting bycatch in the LA shrimp fishery has decreased through time. This decrease is likely due to the changing characteristics of the fishery where skimmer nets have become the preferred gear of the fishery, along with the use of BRDs. An earlier NOAA Fisheries bycatch study conducted in LA waters (Scott-Denton et al. 2006), which only characterized bycatch from the skimmer net fishery operating primarily in Vermilion Bay (CSA 6), reported an overall ratio of bycatch to penaeid shrimp of 0.63. #### Management Implications For managed species identified as main bycatch, the ANI standards require the effects of the fishery to be considered. Consideration of managed non-target species aims primarily at establishing whether the overall effects of fishing on the stock under consideration and all significant removals are accounted for; and that the management strategy and relative measures are effective in maintaining other managed species from experiencing overfishing and other impacts that are likely to be irreversible or very slowly reversible (ANI 2020). The main bycatch species of the LA commercial shrimp fishery per ANI standards (Gulf menhaden and blue crab) are regulated species which undergo periodic stock assessments that output estimates used as metrics of
stock status (SEDAR 2018, West et al. 2019) with fisheries that currently hold Global Sustainable Seafood Initiative (GSSI) accredited sustainability certifications. Removals of Gulf menhaden and blue crab as bycatch from the LA shrimp fishery have not been considered in the respective stock assessments. Bycatch from the offshore Gulf of Mexico shrimp fishery was considered in the most recent Gulf menhaden stock assessment (SEDAR 2018), but was ultimately not used as a model input by the assessment panelists due to the high uncertainty in the estimated time-series and the relatively insignificant level of bycatch when compared to the landings of the fishery. Future LDWF blue crab and SEDAR Gulf menhaden stock assessments would be required to consider removals from the LA shrimp fishery per ANI standards. Time-series of bycatch removals could be estimated directly from annual LA shrimp landings from the mean bycatch to shrimp ratio from this study and the earlier LDWF study (Adkins 1993) along with the percent composition of blue crab and Gulf menhaden in the catches and assumptions of discard mortality. These time-series would unfortunately be considered highly uncertain due to the few bycatch to shrimp ratio estimates available in LA waters over time coupled with the changing characteristics of the fishery, but would allow accurate estimation of the current bycatch removals of the LA shrimp fishery to determine their significance relative to the directed landings of each fishery. #### Literature Cited - Adkins, G. 1993. A Comprehensive Assessment of Bycatch in the Louisiana Shrimp Fishery. Technical Bulletin 42. Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA - ANI. 2020. Gulf United for Lasting Fisheries Responsible Fisheries Management Guidance to Assessment. Issue 1.3, 22 January 2020. Available at: https://www.audubongulf.org/wp-content/uploads/2020/05/GULF-RFM-Guidance-Doc-V-1.3_Final_1.22.2020.pdf - FAO. 2001. Second Technical Consultation on the Suitability of the CITES Criteria for Listing Commercially-exploited Aquatic Species: A background analysis and framework for evaluating the status of commercially-exploited aquatic species in a CITES context. Available at: http://www.fao.org/docrep/MEETING/003/Y1455E.htm - Froese, R. and D. Pauly. Editors. 2011. FishBase. Available at: www.fishbase.org (accessed on 10/1/2020). - LDWF. 2016. Louisiana Shrimp Fishery Management Plan. Louisiana Department of Wildlife and Fisheries, Office of Fisheries. 158pp. Available at: <a href="https://www.wlf.louisiana.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Marine_Fishery_Management_Plan.gov/assets/Resources/Publications/Res - NOAA Fisheries. 2010. Characterization of the US Gulf of Mexico and Southeastern Atlantic Otter Trawl and Bottom Reef Fish Fisheries: Observer Training Manuel. NOAA Fisheries, Southeast Fishery Science Center, Galveston Lab, September 2010. - Palomares, M.L.D. and D. Pauly. Editors. 2020. SeaLifeBase. Available at: www.sealifebase.ca (accessed on 10/26/2020). - Scott-Denton, E., P. Cryer, J. Gocke, M. Harrelson, K. Jones, J. Pulver, J. Nance, R. Smith, and J.A. Williams. 2007. Skimmer trawl fishery catch evaluations in coastal Louisiana, 2004 and 2005. Marine Fisheries Review 68: 30-35. - SEDAR. 2018. Gulf Menhaden SEDAR 63 Stock Assessment Report. SEDAR, Charleston, SC. Available at: http://sedarweb.org/docs/sar/S63_GulfMenSAR_12.17.2018_FINAL.pdf - West, J., H. Blanchet, and P. Cagle. 2019. Update Assessment of Blue Crab *Callinectes sapidus* in Louisiana Waters. 2019 Report of the Louisiana Department of Wildlife and Fisheries. 32 pp. Available at: https://www.wlf.louisiana.gov/assets/Resources/Publications/Stock_Assesments/Blue_Crab/2019 Update Assessment of Blue Crab.pdf ## <u>Tables</u> Table 1. Louisiana annual commercial shrimp gear license sales (percent by gear and total sales), 2000-2019. | Year | Trawl | Skimmer | Butterfly | Total | |------|-------|---------|-----------|--------| | 2000 | 54% | 34% | 12% | 22,218 | | 2001 | 52% | 37% | 10% | 22,865 | | 2002 | 51% | 40% | 9% | 21,627 | | 2003 | 48% | 44% | 8% | 20,586 | | 2004 | 48% | 43% | 8% | 17,347 | | 2005 | 46% | 45% | 9% | 15,420 | | 2006 | 44% | 48% | 9% | 13,646 | | 2007 | 43% | 48% | 9% | 12,590 | | 2008 | 42% | 49% | 10% | 11,476 | | 2009 | 40% | 50% | 10% | 12,082 | | 2010 | 38% | 52% | 10% | 12,806 | | 2011 | 37% | 54% | 9% | 13,234 | | 2012 | 38% | 53% | 8% | 12,728 | | 2013 | 29% | 64% | 7% | 10,123 | | 2014 | 42% | 49% | 9% | 7,319 | | 2015 | 41% | 50% | 9% | 7,551 | | 2016 | 41% | 51% | 9% | 7,340 | | 2017 | 41% | 51% | 8% | 6,867 | | 2018 | 41% | 51% | 8% | 6,236 | | 2019 | 40% | 51% | 8% | 5,791 | Table 2: Louisiana shrimp fishery trips and observer coverage (July 2019 – June 2020) by gear, CSA, and fishing season. | Fishery trips | 37,203 | | | | |----------------|---------------|---------|-----------|---------| | Observed trips | 33 | , | | | | | Fishery | trips | Observed | d trips | | Gear | Frequency | Percent | Frequency | Percent | | Butterfly net | 2276 | 6.1% | 3 | 9.1% | | Otter trawl | 6452 | 17.3% | 6 | 18.2% | | Skimmer net | 28475 | 76.5% | 24 | 72.7% | | | Fishery | trips | Observed | d trips | | CSA | Frequency | Percent | Frequency | Percent | | 1 | 6564 | 17.6% | 7 | 21.2% | | 3 | 11136 | 29.9% | 12 | 36.4% | | 5 | 14607 | 39.3% | 14 | 42.4% | | 6 | 1108 | 3.0% | 0 | 0.0% | | 7 | 3788 | 10.2% | 0 | 0.0% | | | Fishery trips | | Observed | d trips | | Season | Frequency | Percent | Frequency | Percent | | Spring | 7823 | 21.0% | 7 | 21.2% | | Fall | 24457 | 65.7% | 24 | 72.7% | | Inshore closed | 4923 | 13.2% | 2 | 6.1% | Table 3: Species total catch composition and corresponding mean weights. Species mean weights are calculated from the subsampled weights and counts. | Species | total kg | % kg | mean kg | |-------------------------|----------|--------|---------| | WHITE SHRIMP | 6321.765 | 44.313 | | | GULF MENHADEN | 2013.137 | 14.111 | 0.014 | | ATLANTIC CROAKER | 768.736 | 5.389 | 0.011 | | BLUE CRAB | 700.646 | 4.911 | 0.054 | | BROWN SHRIMP | 527.423 | 3.697 | | | DEBRIS | 521.480 | 3.655 | | | SPOT | 449.081 | 3.148 | 0.030 | | JELLYFISH SP. | 415.590 | 2.913 | | | SAND SEATROUT | 402.123 | 2.819 | 0.012 | | HARDHEAD CATFISH | 314.820 | 2.207 | 0.018 | | GAFFTOPSAIL CATFISH | 302.624 | 2.121 | 0.015 | | ATLANTIC CUTLASSFISH | 299.163 | 2.097 | 0.021 | | ATLANTIC THREAD HERRING | 117.899 | 0.826 | 0.015 | | BAY ANCHOVY | 102.212 | 0.716 | 0.001 | | GIZZARD SHAD | 94.846 | 0.665 | 0.019 | | THREADFIN SHAD | 68.982 | 0.484 | 0.014 | | COWNOSE RAY | 68.401 | 0.479 | 0.772 | | SPANISH MACKEREL | 67.702 | 0.475 | 0.023 | | SPOTTED SEATROUT | 66.077 | 0.463 | 0.080 | | ATLANTIC MOONFISH | 62.295 | 0.437 | 0.008 | | CATFISH SP. | 54.260 | 0.380 | 0.022 | | STRIPED MULLET | 43.462 | 0.305 | 0.022 | | ATLANTIC STINGRAY | 41.300 | 0.289 | 0.215 | | HARVESTFISH | 36.490 | 0.256 | 0.025 | | PINFISH | 31.478 | 0.230 | 0.023 | | STRIPED ANCHOVY | 31.222 | 0.221 | 0.037 | | HOGCHOKER | 25.958 | 0.182 | 0.012 | | SHEEPSHEAD | 23.683 | 0.162 | 1.203 | | SOUTHERN FLOUNDER | 23.201 | 0.163 | 0.337 | | SOUTHERN KINGFISH | 20.237 | 0.142 | 0.032 | | SILVER PERCH | 17.558 | 0.142 | 0.026 | | SEABOB | 17.386 | 0.122 | 0.005 | | BLUE CATFISH | 16.445 | 0.115 | 0.007 | | LEAST PUFFER | 16.150 | 0.113 | 0.007 | | WHITE MULLET | 16.042 | 0.112 | 0.023 | | ATLANTIC BRIEF SQUID | 15.726 | 0.110 | 0.009 | | BAY WHIFF | 15.136 | 0.106 | 0.009 | | SCALED SARDINE | 14.126 | 0.099 | 0.007 | | LADYFISH | 10.005 | 0.070 | 0.102 | | CREVALLE JACK | 9.887 | 0.069 | 0.028 | | STAR DRUM | 8.882 | 0.062 | 0.014 | | INSHORE LIZARDFISH | 8.292 | 0.058 | 0.034 | | ATLANTIC SPADEFISH | 7.770 | 0.054 | 0.013 | | HIGHFIN GOBY | 7.558 | 0.053 | 0.027 | | ATLANTIC BUMPER | 6.027 |
0.042 | 0.003 | | VIOLET GOBY | 5.584 | 0.039 | 0.030 | | LOOKDOWN | 4.889 | 0.034 | 0.015 | | FLORIDA POMPANO | 4.535 | 0.032 | 0.092 | | BLUE RUNNER | 4.382 | 0.031 | 0.045 | | BLACK DRUM | 3.471 | 0.024 | 0.088 | | GRAY SNAPPER | 3.053 | 0.021 | 0.044 | | HERMIT CRAB SP. | 2.905 | 0.020 | 0.018 | Table 3 (continued): | Species | total kg | % kg | mean kg | |--------------------------------|----------|-------|---------| | BANDED DRUM | 2.866 | 0.020 | 0.006 | | ATLANTIC MIDSHIPMAN | 2.304 | 0.026 | 0.022 | | GULF STONE CRAB | 2.166 | 0.015 | 0.440 | | ATLANTIC NEEDLEFISH | 2.048 | 0.013 | 0.026 | | BLACKTIP SHARK | 1.970 | 0.014 | 0.200 | | ATLANTIC SILVERSTRIPE HALFBEAK | 1.871 | 0.014 | 0.035 | | SPINY SEAROBIN | 1.723 | 0.013 | 0.004 | | LEATHERJACKET | 1.615 | 0.012 | 0.004 | | INLAND SILVERSIDE | 1.600 | 0.011 | 0.004 | | BIGHEAD SEAROBIN | 1.590 | 0.011 | 0.005 | | ROUGH SILVERSIDE | 1.492 | 0.011 | 0.002 | | BLACKCHEEK TONGUEFISH | 0.985 | 0.007 | 0.033 | | GULF TOADFISH | 0.886 | 0.006 | 0.036 | | PIGFISH | 0.886 | 0.006 | 0.060 | | STRIPED BURRFISH | 0.886 | 0.006 | 0.180 | | GULF BUTTERFISH | 0.768 | 0.005 | 0.005 | | NEEDLEFISH SP. | 0.704 | 0.005 | 0.029 | | SNAIL SP. | 0.689 | 0.005 | 0.016 | | NAKED SOLE | 0.596 | 0.004 | 0.020 | | NORTHERN KINGFISH | 0.596 | 0.004 | 0.040 | | SHARKSUCKER | 0.566 | 0.004 | 0.038 | | ISOPODA SP. | 0.502 | 0.004 | 0.034 | | BAYOU KILLIFISH | 0.478 | 0.003 | 0.019 | | GIANT TIGER PRAWN | 0.359 | 0.003 | 0.073 | | FALSE SILVERSTRIPE HALFBEAK | 0.355 | 0.002 | 0.024 | | ATLANTIC MENHADEN | 0.335 | 0.002 | 0.070 | | MOJARRA SP. | 0.295 | 0.002 | 0.015 | | BLUNTNOSE JACK | 0.251 | 0.002 | 0.009 | | FALSE SHARK EYE | 0.246 | 0.002 | 0.013 | | CRESTED CUSK EEL | 0.197 | 0.001 | 0.040 | | THINSTRIPE HERMIT CRAB | 0.197 | 0.001 | 0.013 | | FAT SLEEPER | 0.177 | 0.001 | 0.018 | | FRINGED FLOUNDER | 0.158 | 0.001 | 0.004 | | FLORIDA ROCKSNAIL | 0.148 | 0.001 | 0.015 | | OYSTER TOADFISH | 0.148 | 0.001 | 0.030 | | RIVER SHRIMP | 0.148 | 0.001 | 0.030 | | SPOTFIN MOJARRA | 0.148 | 0.001 | 0.015 | | YELLOWFIN MOJARRA | 0.148 | 0.001 | 0.008 | | PYGMY SEA BASS | 0.108 | 0.001 | 0.022 | | SMOOTH PUFFER | 0.103 | 0.001 | 0.011 | | AMERICAN PADDLEFISH | 0.098 | 0.001 | 0.020 | | BIVALVE CLAM SP. | 0.098 | 0.001 | 0.020 | | MANTIS SHRIMP | 0.098 | 0.001 | 0.010 | | PINK PURSE CRAB | 0.098 | 0.001 | 0.010 | | WHITE RIVER CRAWFISH | 0.098 | 0.001 | 0.010 | | SILVER ANCHOVY | 0.079 | 0.001 | 0.008 | | BIGCLAW SNAPPING SHRIMP | 0.049 | 0.000 | 0.010 | | REDEAR SUNFISH | 0.049 | 0.000 | 0.010 | | FLORIDA LADY CRAB | 0.044 | 0.000 | 0.009 | | TIDEWATER MOJARRA | 0.044 | 0.000 | 0.009 | | ESTUARINE MUD CRAB | 0.015 | 0.000 | 0.001 | | BIGEYE ROBIN | 0.005 | 0.000 | 0.001 | | GULF PIPEFISH | 0.005 | 0.000 | 0.001 | | SPECKLED SWIMMING CRAB | 0.005 | 0.000 | 0.001 | | | | | | Table 4: Bycatch to penaeid shrimp (brown, white, seabob) sample ratio summary statistics in units of weight. The sample ratio mean and error estimates are geometric. | D - (| - (l | | - | Ratio (bycatch/shrimp) | | | | | |-------|----------------|---------|-----|------------------------|-------|--|--|--| | | o (bycatch /sl | | | | | | | | | Bin | Frequency | Percent | | Mean | 1.013 | | | | | 0.0 | 163 | 50.309 | | L95%CI | 0.882 | | | | | 1.0 | 55 | 16.975 | | U95%CI | 1.163 | | | | | 2.0 | 39 | 12.037 | | CV | 1.986 | | | | | 3.0 | 18 | 5.556 | | Tows | 324 | | | | | 4.0 | 16 | 4.938 | | | | | | | | 5.0 | 12 | 3.704 | | | | | | | | 6.0 | 5 | 1.543 | | | | | | | | 7.0 | 4 | 1.235 | | | | | | | | 8.0 | 2 | 0.617 | | | | | | | | 9.0 | | | | | | | | | | 10.0 | 2 | 0.617 | | | | | | | | 11.0 | | | | | | | | | | 12.0 | | | | | | | | | | 13.0 | 1 | 0.309 | | | | | | | | 14.0 | | | | | | | | | | 15.0 | 1 | 0.309 | | | | | | | | 16.0 | 2 | 0.617 | | | | | | | | 17.0 | | | | | | | | | | 18.0 | | | | | | | | | | 19.0 | 2 | 0.617 | | | | | | | | | | | | | | | | | | 51.0 | 1 | 0.309 | | | | | | | | | | | | ¥ | | | | | | 111.0 | 1 | 0.309 | | | | | | | | 111.0 | | 0.507 | - / | | | | | | Table 5: Bycatch size compositions of managed and commonly harvested species. Size measurements are fork length (finfish), total length (shrimp), and carapace width (crab). | Size bin (cm) | ATLANTIC
CROAKER | BLACK DRUM | BLUE CRAB | BROWN
SHRIMP | GRAY SNAPPER | GULF
MENHADEN | SEABOB | SHEEPSHEAD | SOUTHERN
FLOUNDER | SPOTTED
SEATROUT | STRIPED
MULLET | WHITE SHRIMP | |----------------|---------------------|------------|-----------|-----------------|--------------|------------------|----------|------------|----------------------|---------------------|-------------------|----------------| | 0 | 2 | | | | | | | | | | | | | 1 | 1 | | 30 | 1 | | | | | | | | | | 2 | | | 96 | 1 | 2 | 1 | | | | | | 1 | | 3 | 3 | | 291 | | 1 | 6 | | | | | | 6 | | 4 | 1 | | 358 | 15 | | 64 | | | | | | 14 | | 5 | 39 | | 285 | 91 | | 302 | | | | | | 74 | | 6 | 284 | | 177 | 419 | | 627 | 1 | | | | 1 | 263 | | 7
8 | 485
748 | | 139 | 1,087
1,246 | | 1,074
970 | 6
28 | | | | 2
4 | 700 | | 8 | 632 | 1 | 111
91 | 635 | | 579 | 28
34 | | | 5 | 9 | 1,039
1,043 | | 10 | 618 | | 94 | 260 | 1 | 742 | 15 | | | 9 | 24 | 788 | | 11 | 988 | | 123 | 112 | 1 | 830 | 1 | | | 12 | 39 | 1,035 | | 12 | 822 | | 116 | 20 | | 330 | | | | 18 | 25 | 1,395 | | 13 | 513 | | 89 | 4 | 1 | 156 | | | | 11 | 30 | 1,562 | | 14 | 261 | | 82 | 1 | | 172 | | | / | 6 | 27 | 1,021 | | 15 | 120 | | 99 | | | 126 | | | | 6 | 16 | 336 | | 16 | 55 | | 124 | | | 53 | | / | | 6 | 12 | 78 | | 17 | 24 | 2 | 71 | | | 11 | | / | | 8 | 6 | 9 | | 18 | 10 | | 24 | 1 | | 5 | / | / | | 1 | 8 | 2 | | 19 | 3 | 3 | 6 | | | 1 | / | | | 4 | 6 | 2 | | 20 | 1 | 1 | | | | 1 | | | 1 | 8 | 3 | | | 21 | 3 | 1 | | | | / | | | 1 | 12 | 2 | | | 22 | | | | | / | 1 | | | | 13 | 1 | | | 23 | | | | | 4 | | | | 1 | 5 | 2 | | | 24 | | | | / | | | | | 1 | 6 | | | | 25 | | | | / | | | | | | 8 | | | | 26 | | | | / | | | | | 1 | 3 | | | | 27 | | | -/ | | | | | | | 5 | | | | 28 | | | / | | | | | | 1 | 4 | | | | 29 | | / | | | | | | | 1 | 2 | | | | 30 | | | | | | | | 1 | 1 | 2 | | | | 31 | / | | | | | | | | | | | | | 32 | / | | | | | | | 1 | | | | | | 33
34 | | | | | | | | | | 2 | | | | | | | | | | | | 1 | | | | | | 35
36 | | | | | | | | | 2 | 1 | | | | 37 | | | | | | | | | 1 | | | | | 38 | | | | | | | | | | | | | | 39 | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | 41 | | | | | | | | | | | | | | 42 | | | | | | | | | | | | | | 43 | | | | | | | | 1 | | | | | | Mean size (mm) | 107 | 176 | 83 | 82 | 73 | 94 | 91 | 354 | 290 | 187 | 135 | 113 | | | 5613 | | | | | | | | | | | | Table 6: Large specimen catch composition. Size measurements are fork length. | | | released condition | | weight (kg) | | | size (mm) | | | | | | |----------------------|---------|--------------------|------|-------------|------|---|-----------|------|------|---|-----|------| | Species | numbers | alive | dead | unknown | mean | n | min | max | mean | n | min | max | | Black Drum | 33 | 20 | 2 | 11 | 7.67 | 2 | 6.98 | 8.35 | 905 | 1 | 905 | 905 | | Cownose Ray | 27 | 5 | | 22 | 0.81 | 5 | 0.60 | 0.96 | 323 | 4 | 136 | 410 | | Atlantic Stingray | 25 | 10 | 11 | 4 | 0.86 | 3 | 0.41 | 1.16 | 146 | 1 | 146 | 146 | | Sheepshead | 15 | 10 | 1 | 4 | 2.59 | 3 | 2.48 | 2.78 | 494 | 3 | 460 | 528 | | Longnose Gar | 12 | 12 | | | | | | | | | | | | Diamondback Terrapin | 5 | 5 | | | | | | | | | | | | Red Drum | 5 | 5 | | | | | | | | | | | | Hardhead Catfish | 5 | 5 | | | | | | | | | | | | Alligator Gar | 4 | 4 | | | | | | | 1140 | 2 | 450 | 1829 | | Atlantic Tripletail | 3 | 2 | | 1 | | | | | | | | | | Bull shark | 2 | 2 | | | 4.92 | 2 | 4.83 | 5.01 | | | | | | Spotted Seatrout | 2 | 2 | | | | | | | | | | | | Bonnethead | 1 | 1 | | | | | | | | | | | | Blacktip Shark | 1 | 1 | | | 3.62 | 1 | 3.62 | 3.62 | 566 | 1 | 566 | 566 | Table 7: FAO proposed guideline for indices of productivity/resilience for exploited aquatic species (top table) and corresponding productivity/resilience levels for blue crab and Gulf menhaden (bottom table). Parameter values are taken from the latest stock assessment reports (West et al. 2019, SEDAR 63) unless noted by an * where values are taken from FishBase (Froese and Pauly 2011) for Gulf menhaden and SeaLifeBase (Palomares and Pauly 2020) for blue crab. | | Productivity/Resilience | | | | |--|-------------------------|-------------|-------|--| | Parameter | Low | Medium | High | | | Intrinsic rate of population growth (r per yr) | < 0.14 | 0.14 - 0.35 | >0.35 | | | Natural mortality rate (M per yr) | < 0.2 | 0.2 - 0.5 | >0.5 | | | Individual growth rate (K per yr) | < 0.15 | 0.15 - 0.33 | >0.33 | | | Age at maturity (yrs) | >8 | 8 - 3.3 | <3.3 | | | Maximum age (yrs) | >25 | 14 - 25 | <14 | | | Generation time (yrs) | >10 | 10.0 - 5.0 | <5 | | | | Blue Crab | | Gulf Me | enhaden | |--|-----------|-------|---------|---------| | Parameter | Value | Index | Value | Index | | Intrinsic rate of population growth (r per yr) | 0.6* | High | 3.0* | High | | Natural mortality rate (M per yr) | 1.0 | High | 1.1 | High | | Individual growth rate (K per yr) | 1.9 | High | 0.3 | High | | Age at maturity (yrs) | 1.0 | High | 2.0 | High | | Maximum age (yrs) | 3.0 | High | 6.0 | High | | Generation time (yrs) | < 3.0 | High | 2.4* | High | | Overall productivity /resilience level | High | | Hi | gh | ## **Figures** Figure 1: Shrimp fishery trips in LA waters by number of days at sea and corresponding total penaeid shrimp landings taken from the LDWF Trip Ticket program, 2000-2019. Note: Landings and fishery trips do not include records from out of state or federal waters. Figure 2: Louisiana state waters and LDWF Coastal Study Areas delineated by the yellow lines (top graphic) and locations of observed fishery tows (bottom graphic) by gear fished (otter trawl, skimmer net, butterfly net) and fishing season (spring, fall,
inshore closed). #### Louisiana Red Drum (Sciaenops ocellatus) Life History Erik Lang and Joe West Office of Fisheries Louisiana Department of Wildlife and Fisheries #### Overview Red drum (*Sciaenops ocellatus*) growth and weight-length models are developed from Louisiana Department of Wildlife and Fisheries (LDWF) datasets for use in stock assessment. #### Methods Growth The von Bertalanffy growth model is the most common function used to model length-at-age and is configured as: $$L_t = L_{\infty} (1 - e^{-k(t - t_0)})$$ [1] where L_t is mean length at age in years (t), L_{∞} is the asymptotic average maximum size, k is the rate at which length approaches L_{∞} , and t_0 is the theoretical age when length=0. The von Bertalanffy growth model has been proven inadequate for fitting some sciaenid species length-at-age data, including Red Drum (Beckman et al. 1988). Because of the very rapid growth exhibited in juveniles and the relatively slow growth of adult Red Drum (RD), predicted lengths-at-age of younger fish tend to be overestimated and predicted lengths-at-age of older fish underestimated with the standard von Bertalanffy model. A different growth model has been developed that accounts for growth rates changing continuously with age (damped growth; Porch et al. 2002), rather than the constant growth rate (k) across ages inherent to the von Bertalanffy model. The damped growth model allows a continuous change in growth rates across ages rather than a single discontinuous change at a particular age such as the "double" von Bertalanffy generalization. Length-at-age is calculated with the damped model as: $$L_t = L_{\infty} (1 - e^{\beta - k_0(t - t_0)}) \quad [2]$$ $$\beta = \frac{k_1}{\lambda} (e^{-\lambda t} - e^{-\lambda t_0})$$ where $k = k_0 + k_1 e^{-\lambda t} \ge 0$ (i.e., assuming fish will not shrink with age). The λ parameter is the damping coefficient allowing growth rates to change with age. Both growth models above were fit to a LDWF RD dataset with the SAS nonlinear regression fitting procedure (PROC NLIN; SAS 2008). To determine the most suitable model for stock assessment purposes, residual plots of each model were examined for normality and each model was ranked using Akaike's (1973) information criterion (AIC). Due to the minimum size limit in the RD fishery, only LDWF FI information was used for model fitting. The FI length-at-age dataset (n=1,333) consists of age samples from RD catches (2019-2021) collected from the LDWF estuarine trammel net and bag seine survey (LDWF 2018), and the LDWF component of the SEAMAP nearshore bottom longline survey (SEAMAP 2013). Biological ages are assigned with an assumed birthdate of October 1st. The young-of-the-year fish (yoy) included from the marine bag seine survey are not directly aged, but are assigned ages using the assumed October 1st birthdate and the sample collection date, and assuming only fish less than 8 inches total length are yoy fish after removing fish clearly not yoy. To not overfit the yoy data, a random draw of 100 yoy fish were selected from the available length-at-age samples from the seine survey and included in the modeled dataset. Weight-Length The relationship between fish length and weight is modeled with a power function configured as: $$W = aL^b$$ [3] where W is weight, L is length, a is the weight-length constant and b is the allometric exponent. The power function above is fit to a LDWF RD weight-length dataset (n=17,780) from fish samples collected from LDWF recreational sportfish sampling (2002-2021) and the LDWF marine trammel net survey (2019-2021) with the SAS nonlinear regression fitting procedure (PROC NLIN; SAS 2008). Outliers were identified with studentized residuals over an absolute value of 3 and removed from the dataset, and the model refit. #### Results #### Growth The damped growth model was chosen over the traditional von Bertalanffy model due to a lower AIC value (von Bertalanffy=2196; damped=2167) after examination of each models residual plot (Figure 1). The damped growth model parameter estimates, standard errors, and confidence limits are presented in Table 1. The damped growth curve and length at age observations are also presented in Figure 2. Examination of age-specific coefficient of variations (CV) from the damped growth model (Figure 3) shows a declining pattern through age-5 until becoming relatively uniform for fish age-6 and greater. Weight-Length Parameter estimates, standard errors, and confidence limits of the weight-length regression are presented in Table 2. Expected values and weight-length observations are also presented in Figure 4. #### Literature Cited - Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In Second international symposium on information theory (B. N. Petrov and F. Csaki, eds.), p. 267–281. Akademiai Kiado, Budapest. - Beckman, D. W., C. A. Wilson, and A. L. Stanley. 1988. Age and growth of red drum, Sciaenops ocellatus from offshore waters of the Gulf of Mexico. Fish. Bull. 87: 17–28. - LDWF 2018. Marine Fisheries Section Independent Sampling Activities Field Manual. Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA. - Porch, C.E., C.A. Wilson, D.L. Nieland. 2002. A New Growth Model for Red Drum (*Sciaenops ocellatus*) that Accommodates Seasonal and Ontogenic Changes in Growth Rates. Fisheries Bulletin. 100:149-152. - SEAMAP. 2013. Bottom Longline Survey Protocol. Gulf States Marine Fisheries Commission. 2404 Government St. Ocean Springs, MS 39564. Version 2.0. - SAS Institute Inc. 2008. SAS/STAT® 9.2 User's Guide. Cary, NC: SAS Institute Inc. #### <u>Tables</u> Table 1: Damped growth model parameters with standard errors and 95% confidence limits for Louisiana Red Drum (Sciaenops ocellatus). Units are total length in inches and age in years. | Parameters | Estimate | ŚE | U95%CL | L95%CL | |----------------|----------|--------|---------|---------| | L_{∞} | 37.9864 | 0.1161 | 38.2141 | 37.7586 | | k_{O} | 0.4596 | 0.0911 | 0.6382 | 0.2810 | | t_0 | -0.3206 | 0.0800 | -0.1636 | -0.4775 | | k ₁ | -0.1957 | 0.0742 | -0.0501 | -0.3412 | | λ | 0.2981 | 0.2640 | 0.8159 | -0.2197 | Table 2: Weight-length regression parameter estimates with standard errors and 95% confidence limits for Louisiana Red Drum (Sciaenops ocellatus). Units are total length in inches and whole weight in pounds. | Parameters | Estimate | SE | U95%CL | L95%CL | |------------|----------|-----------|----------|----------| | а | 0.000248 | 0.0000034 | 0.000255 | 0.000242 | | b | 3.1003 | 0.00399 | 3.1081 | 3.0925 | ## **Figures** Figure 1. Residual plots for fits to the Louisiana red drum (Sciaenops ocellatus) age and length data of the traditional 3-parameter Von Bertalanffy growth model (A) and the 5-parameter damped Von Bertalanffy growth model (B). Figure 2: Louisiana Red Drum (*Sciaenops ocellatus*) total length-at-age observations and predicted total length-at-age from the damped growth model. Units are total length in inches and age in years. Figure 3: Age-specific (0-10+) coefficient of variations (CV) for Louisiana Red Drum (*Sciaenops ocellatus*) from the damped growth model with a linear regression fit from the age-0 to the age-5 CV represented by the solid diagonal and a uniform CV of the age-6 plus group represented by the dashed horizontal. Figure 4: Louisiana Red Drum (*Sciaenops ocellatus*) whole weight/total length observations and predicted values from the power model. Units are total length in inches and whole weight in pounds.